Biochar Effects on Two Tropical Tree Species and Its Potential as a Tool for Reforestation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Species
2.3. Soil, Biochar, and Fertilizer
2.4. Experimental Design
2.5. Data Collection
2.6. Statistical Analysis
3. Results
3.1. Survivorship
3.2. Growth and Biomass
4. Discussion
4.1. Survivorship
4.2. Plant Growth and Development
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Assessing the Species by Treatment Interaction
Methodology
- BLOCK + SPECIES + TREATMENT
- SPECIES × TREATMENT
- SPECIES × BLOCK
- BLOCK × TREATMENT
- With BLOCK set as a random effect.
Number of Leaves
Sum Sq | Mean Sq | NumDF | DenDF | F Value | Pr (>F) | |
---|---|---|---|---|---|---|
TREATMENT | 155.748 | 31.1496 | 5 | 317.02 | 6.0399 | 2.338 × 10−5 *** |
BLOCK | 0.004 | 0.0041 | 1 | 2.01 | 0.0008 | 0.98007 |
SPECIES | 6.563 | 6.5630 | 1 | 316.98 | 1.2726 | 0.26014 |
TREATMENT: SPECIES | 52.462 | 10.4924 | 5 | 317.33 | 2.0345 | 0.07356 |
BLOCK: SPECIES | 13.433 | 13.4333 | 1 | 316.97 | 2.6047 | 0.10754 |
TREATMENT: BLOCK | 54.763 | 10.9526 | 5 | 317.02 | 2.1237 | 0.06239 |
Monthly Growth in Height
Sum Sq | Mean Sq | NumDF | DenDF | F Value | Pr (>F) | |
---|---|---|---|---|---|---|
TREATMENT | 548.17 | 109.633 | 5 | 317.06 | 11.3993 | 3.951 × 10−10 *** |
BLOCK | 16.23 | 16.231 | 1 | 2.05 | 1.6876 | 0.3206 |
SPECIES | 242.90 | 242.902 | 1 | 317.02 | 25.2563 | 8.406 × 10−7 *** |
TREATMENT: SPECIES | 379.29 | 75.858 | 5 | 317.39 | 7.8875 | 5.104 × 10−7 *** |
BLOCK: SPECIES | 3.37 | 3.373 | 1 | 317.01 | 0.3508 | 0.5541 |
TREATMENT: BLOCK | 76.64 | 15.329 | 5 | 317.06 | 1.5938 | 0.1614 |
Monthly Growth in Diameter
Sum Sq | Mean Sq | NumDF | DenDF | F Value | Pr (>F) | |
---|---|---|---|---|---|---|
TREATMENT | 0.224286 | 0.044857 | 5 | 317.04 | 9.6375 | 1.405 × 10−8 *** |
BLOCK | 0.004222 | 0.004222 | 1 | 2.03 | 0.9072 | 0.439940 |
SPECIES | 0.244849 | 0.244849 | 1 | 317.01 | 52.6053 | 3.147 × 10−12 *** |
TREATMENT: SPECIES | 0.088208 | 0.017642 | 5 | 317.28 | 3.7903 | 0.002388 ** |
BLOCK: SPECIES | 0.000036 | 0.000036 | 1 | 317.01 | 0.0077 | 0.930126 |
TREATMENT: BLOCK | 0.070144 | 0.014029 | 5 | 317.04 | 3.0141 | 0.011287 * |
Above-Ground Biomass
Sum Sq | Mean Sq | NumDF | DenDF | F Value | Pr (>F) | |
---|---|---|---|---|---|---|
TREATMENT | 0.44429 | 0.088858 | 5 | 317.04 | 7.9573 | 4.423 × 10−7 *** |
BLOCK | 0.02669 | 0.026692 | 1 | 2.04 | 2.3903 | 0.259964 |
SPECIES | 0.06797 | 0.067971 | 1 | 317.00 | 6.0869 | 0.014147 * |
TREATMENT: SPECIES | 0.17724 | 0.035449 | 5 | 317.33 | 3.1745 | 0.008216 ** |
BLOCK: SPECIES | 0.01270 | 0.012701 | 1 | 317.00 | 1.1374 | 0.287022 |
TREATMENT: BLOCK | 0.11145 | 0.022290 | 5 | 317.05 | 1.9961 | 0.078916 |
Below-Ground Biomass
Sum Sq | Mean Sq | NumDF | DenDF | F Value | Pr (>F) | |
---|---|---|---|---|---|---|
TREATMENT | 0.49280 | 0.09856 | 5 | 317.18 | 2.9033 | 0.0140340 * |
BLOCK | 0.40934 | 0.40934 | 1 | 2.17 | 12.0581 | 0.0656557 |
SPECIES | 2.23639 | 2.23639 | 1 | 317.06 | 65.8784 | 1.07 × 10−14 *** |
TREATMENT: SPECIES | 0.85797 | 0.17159 | 5 | 317.89 | 5.0547 | 0.0001792 *** |
BLOCK: SPECIES | 0.33539 | 0.33539 | 1 | 317.05 | 9.8796 | 0.0018292 ** |
TREATMENT: BLOCK | 0.13594 | 0.02719 | 5 | 317.19 | 0.8009 | 0.5496668 |
Appendix B. Assessing the Biochar by Fertilizer Interaction
Methodology
- BLOCK+SPECIES × Bioch × Ferti
- With BLOCK set as a random effect.
Sum Sq | Mean Sq | NumDF | DenDF | F Value | Pr (>F) | |
---|---|---|---|---|---|---|
BLOCK | 34.68 | 11.56 | 3 | 0 | 1.1943 | 1.000000 |
SPECIES | 1773.76 | 1773.76 | 1 | 323 | 183.2302 | <2.2 × 10−16 *** |
Bioch | 899.85 | 449.92 | 2 | 323 | 46.4773 | <2.2 × 10−16 *** |
Ferti | 870.48 | 870.48 | 1 | 323 | 89.9209 | <2.2 × 10−16 *** |
SPECIES: Bioch | 325.72 | 162.86 | 2 | 323 | 16.8233 | 1.121 × 10−7 *** |
SPECIES: Ferti | 43.96 | 43.96 | 1 | 323 | 4.5414 | 0.033838 * |
Bioch: Ferti | 108.03 | 54.02 | 2 | 323 | 5.5798 | 0.004146 ** |
SPECIES: Bioch:Ferti | 42.32 | 21.16 | 2 | 323 | 2.1858 | 0.114044 |
Sum Sq | Mean Sq | NumDF | DenDF | F Value | Pr (>F) | |
---|---|---|---|---|---|---|
BLOCK | 0.02616 | 0.00872 | 3 | 323 | 1.8215 | 0.1430648 |
SPECIES | 1.43954 | 1.43954 | 1 | 323 | 300.7423 | <2.2 × 10−16 *** |
Bioch | 0.10187 | 0.05093 | 2 | 323 | 10.6406 | 3.347 × 10−5 *** |
Ferti | 0.32738 | 0.32738 | 1 | 323 | 68.3953 | 3.536 × 10−15 *** |
SPECIES: Bioch | 0.02669 | 0.01334 | 2 | 323 | 2.7878 | 0.0630377 |
SPECIES: Ferti | 0.05361 | 0.05361 | 1 | 323 | 11.1993 | 0.0009148 *** |
Bioch: Ferti | 0.01621 | 0.00811 | 2 | 323 | 1.6936 | 0.1854894 |
SPECIES: Bioch:Ferti | 0.01101 | 0.00550 | 2 | 323 | 1.1498 | 0.3179925 |
Sum Sq | Mean Sq | NumDF | DenDF | F Value | Pr (>F) | |
---|---|---|---|---|---|---|
BLOCK | 22.34 | 7.45 | 3 | 0 | 1.4150 | 1.0000000 |
SPECIES | 210.83 | 210.83 | 1 | 323 | 40.0596 | 8.227 × 10−10 *** |
Bioch | 275.51 | 137.76 | 2 | 323 | 26.1753 | 2.915 × 10−11 *** |
Ferti | 328.21 | 328.21 | 1 | 323 | 62.3644 | 4.505 × 10−14 *** |
SPECIES: Bioch | 34.02 | 17.01 | 2 | 323 | 3.2325 | 0.0407378 * |
SPECIES: Ferti | 4.98 | 4.98 | 1 | 323 | 0.9454 | 0.3316131 |
Bioch: Ferti | 93.90 | 46.95 | 2 | 323 | 8.9208 | 0.0001694 *** |
SPECIES: Bioch:Ferti | 16.90 | 8.45 | 2 | 323 | 1.6058 | 0.2023362 |
Sum Sq | Mean Sq | NumDF | DenDF | F Value | Pr (>F) | |
---|---|---|---|---|---|---|
BLOCK | 0.1913 | 0.0638 | 3 | 0 | 1.8318 | 1.0000 |
SPECIES | 5.6024 | 5.6024 | 1 | 323 | 160.9417 | <2.2 × 10−16 *** |
Bioch | 1.7347 | 0.8674 | 2 | 323 | 24.9168 | 8.640 × 10−11 *** |
Ferti | 0.1741 | 0.1741 | 1 | 323 | 5.0018 | 0.0260 * |
SPECIES: Bioch | 0.7602 | 0.3801 | 2 | 323 | 10.9195 | 2.577 × 10−5 *** |
SPECIES: Ferti | 0.0628 | 0.0628 | 1 | 323 | 1.8031 | 0.1803 |
Bioch: Ferti | 0.0201 | 0.0101 | 2 | 323 | 0.2889 | 0.7493 |
SPECIES: Bioch:Ferti | 0.0414 | 0.0207 | 2 | 323 | 0.5946 | 0.5524 |
Sum Sq | Mean Sq | NumDF | DenDF | F Value | Pr (>F) | |
---|---|---|---|---|---|---|
BLOCK | 0.01477 | 0.00492 | 3 | 0 | 0.4332 | 1.000000 |
SPECIES | 0.14328 | 0.14328 | 1 | 323 | 12.6089 | 0.000441 *** |
Bioch | 0.61228 | 0.30614 | 2 | 323 | 26.9415 | 1.51 × 10−11 *** |
Ferti | 0.36876 | 0.36876 | 1 | 323 | 32.4524 | 2.75 × 10−8 *** |
SPECIES: Bioch | 0.13810 | 0.06905 | 2 | 323 | 6.0767 | 0.002567 ** |
SPECIES: Ferti | 0.00609 | 0.00609 | 1 | 323 | 0.5359 | 0.464668 |
Bioch: Ferti | 0.07185 | 0.03592 | 2 | 323 | 3.1615 | 0.043676 * |
SPECIES: Bioch:Ferti | 0.04963 | 0.02481 | 2 | 323 | 2.1837 | 0.114280 |
References
- WWF. Deforestation Threats WWF. Available online: https://www.worldwildlife.org/threats/deforestation (accessed on 9 March 2019).
- FAO. The Sate of the World’s Forests 2018—Forest Pathways to Sustainable Development; FAO: Rome, Italy, 2018. [Google Scholar]
- Schwartz, N.B.; Uriarte, M.; Defries, R.; Gutierrez-Velez, V.H.; Pinedo-Vasquez, M.A. Land-use dynamics influence estimates of carbon sequestration potential in tropical second-growth forest. Environ. Res. Lett. 2017, 12, 074023. [Google Scholar] [CrossRef]
- Vidal, J. A eureka moment for the planet: We’re finally planting trees again. Guardian. 2018. Available online: https://www.theguardian.com/commentisfree/2018/feb/13/worlds-lost-forests-returning-trees (accessed on 9 March 2019).
- EASAC. Negative Emission Technologies: What Role in Meeting Paris Agreement Targets? Available online: https://easac.eu (accessed on 15 June 2018).
- Smith, P.; Davis, S.J.; Creutzig, F.; Fuss, S.; Minx, J.; Gabrielle, B.; Kato, E.; Jackson, R.B.; Cowie, A.; Kriegler, E.; et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Chang. 2016, 6, 42–50. [Google Scholar] [CrossRef]
- Le, H.D.; Smith, C.; Herbohn, J. Identifying interactions among reforestation success drivers: A case study from the Philippines. Ecol. Modell. 2015, 316, 62–77. [Google Scholar] [CrossRef]
- Mansourian, S.; Vallauri, D.; Dudley, N. Forest Restoration in Landscapes—Beyond Planting Trees; Springer: Berlin, Germany, 2006. [Google Scholar]
- Tan, Z.; Lin, C.S.K.; Ji, X.; Rainey, T.J. Returning biochar to fields: A review. Appl. Soil Ecol. 2017, 116, 1–11. [Google Scholar] [CrossRef]
- Lehmann, J. Bio-energy in the black. Front. Ecol. Environ. 2007, 5, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota–A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Rogovska, N.; Laird, D.; Cruse, R.; Fleming, P.; Parkin, T.; Meek, D. Impact of Biochar on Manure Carbon Stabilization and Greenhouse Gas Emissions. Soil Sci. Soc. Am. J. 2011, 75, 871–879. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S.C.; Gale, N. Biochar and forest restoration: A review and meta-analysis of tree growth responses. New For. 2015, 46, 931–946. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.A.; van der Velde, M.; Bastos, A.C.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Crane-Droesch, A.; Abiven, S.; Jeffery, S.; Torn, M.S. Heterogeneous global crop yield response to biochar: A meta-regression analysis. Environ. Res. Lett. 2013, 8, 044049. [Google Scholar] [CrossRef]
- Joseph, S.D.; Camps-Arbestain, M.; Lin, Y.; Munroe, P.; Chia, C.H.; Hook, J.; Van Zwieten, L.; Kimber, S.; Cowie, A.; Singh, B.P.; et al. An investigation into the reactions of biochar in soil. Aust. J. Soil Res. 2010, 48, 501–515. [Google Scholar] [CrossRef]
- Joseph, S.D.; Downie, A.; Munroe, P.; Crosky, A.; Lehmann, J. Biochar for Carbon Sequestration, Reduction of Greenhouse Gas Emissions and Enhancement of Soil Fertility; A Review of the Materials Science. In Proceedings of the Australian Combustion Symposium, Sydney, Australia, 9–11 December 2007; pp. 130–133. [Google Scholar]
- Ding, Y.; Liu, Y.; Liu, S.; Huang, X.; Li, Z.; Tan, X.; Zeng, G.; Zhou, L. Potential Benefits from Biochar Application for Agricultural Use: A Review. Pedosphere 2017, 27, 645–661. [Google Scholar] [CrossRef]
- Drake, J.A.; Cavagnaro, T.R.; Cunningham, S.C.; Jackson, W.R.; Patti, A.F. Does Biochar Improve Establishment of Tree Seedlings in Saline Sodic Soils? L. Degrad. Dev. 2016, 27, 52–59. [Google Scholar] [CrossRef]
- Fagbenro, J.A.; Oshunsanya, S.O.; Oyeleye, B.A. Effects of Gliricidia Biochar and Inorganic Fertilizer on Moringa Plant Grown in an Oxisol. Commun. Soil Sci. Plant Anal. 2015, 46, 619–626. [Google Scholar] [CrossRef]
- Biederman, L.A.; Harpole, W.S.; Stanley Harpole, W. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Jeffery, S.; Abalos, D.; Prodana, M.; Bastos, A.C.; Van Groenigen, J.W.; Hungate, B.A.; Verheijen, F. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 2017, 12, 053001. [Google Scholar] [CrossRef]
- El-Naggar, A.; Lee, S.S.; Rinklebe, J.; Farooq, M.; Song, H.; Sarmah, A.K.; Zimmerman, A.R.; Ahmad, M.; Shaheen, S.M.; Ok, Y.S. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Li, S.; Harris, S.; Anandhi, A.; Chen, G. Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses—Appendices. J. Clean. Prod. 2019, 215, 890–902. [Google Scholar] [CrossRef]
- SENAMHI. Mapa Climatico del Perú. Available online: https://www.senamhi.gob.pe/?&p=mapa-climatico-del-peru (accessed on 26 January 2019).
- Weather Spark. Tiempo Promedio en Puerto Maldonado, Perú—1980 al 2016. Available online: https://es.weatherspark.com/m/147329/5/Tiempo-promedio-en-mayo-en-Puerto-Maldonado-Perú#Sections-Temperature (accessed on 26 January 2019).
- Pérez, R.; Condit, R. Tree Atlas of Panama. Available online: http://ctfs.arnarb.harvard.edu/webatlas/maintreeatlas.php (accessed on 18 November 2018).
- Carpenter, F.L. Interplanting Inga edulis yields nitrogen benefits to Terminalia amazonia. For. Ecol. Manag. 2006, 233, 344–351. [Google Scholar]
- Pinedo-vasquez, M.; Hecht, S.; Padoch, C. Amazonia. In Traditional Forest-Related Knowledge: Sustaining Communities, Ecosystems and Biocultural Diversity; Parrota, J.A., Trosper, R.L., Eds.; Springer: Berlin, Germany, 2012; Volume 12, pp. 119–155. [Google Scholar]
- Lefebvre, D.; Cabanillas, F.; Román-Dañobeytia, F.; Silman, M.; Fernandez, L.E. Producción y Utilización de Biocarbón; CINCIA: Puerto Maldonado, Peru, 2018. [Google Scholar]
- EBC. European Biochar Certificate—Guidelines for a Sustainable Production of Biochar; European Biochar Foundation (EBC): Arbaz, Switzerland, 2016. [Google Scholar]
- Pulito, A.P.; de Gonçalves, J.L.M.; Smethurst, P.J.; Junior, J.C.A.; Alvares, C.A.; Rocha, J.H.T.; Hübner, A.; de Moraes, L.F.; Miranda, A.C.; Kamogawa, M.Y.; et al. Available nitrogen and responses to nitrogen fertilizer in brazilian eucalypt plantations on soils of contrasting texture. Forests 2015, 6, 973–991. [Google Scholar] [CrossRef]
- Da Silva, P.H.M.; Poggiani, F.; Libardi, P.L.; Gonçalves, A.N. Fertilizer management of eucalypt plantations on sandy soil in Brazil: Initial growth and nutrient cycling. For. Ecol. Manag. 2013, 301, 67–78. [Google Scholar] [CrossRef]
- Nichols, J.D.; Rosemeyer, M.E.; Carpenter, F.L.; Kettler, J. Intercropping legume trees with native timber trees rapidly restores cover to eroded tropical pasture without fertilization. For. Ecol. Manag. 2001, 152, 195–209. [Google Scholar] [CrossRef]
- Core Team, R. R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 14 December 2018).
- Fry, J.C. Biological Data Analysis: A Practical Approach; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.; Christensen, R. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- de Farias, J.; Marimon, B.S.; de Carvalho Ramos Silva, L.; Petter, F.A.A.; Andrade, F.R.F.R.; Morandi, P.S.S.; Marimon-Junior, B.H. Survival and growth of native Tachigali vulgaris and exotic Eucalyptus urophylla × Eucalyptus grandis trees in degraded soils with biochar amendment in southern Amazonia. For. Ecol. Manag. 2016, 368, 173–182. [Google Scholar] [CrossRef]
- Carrari, E.; Ampoorter, E.; Bussotti, F.; Coppi, A.; Garcia Nogales, A.; Pollastrini, M.; Verheyen, K.; Selvi, F. Effects of charcoal hearth soil on forest regeneration: Evidence from a two-year experiment on tree seedlings. For. Ecol. Manag. 2018, 427, 37–44. [Google Scholar] [CrossRef]
- Sarauer, J.L.; Coleman, M.D. Biochar as a growing media component for containerized production of Douglas-fir. Can. J. For. Res. 2018, 48, 581–588. [Google Scholar] [CrossRef] [Green Version]
- Spokas, K.A.; Cantrell, K.B.; Novak, J.M.; Archer, D.W.; Ippolito, J.A.; Collins, H.P.; Boateng, A.A.; Lima, I.M.; Lamb, M.C.; McAloon, A.J.; et al. Biochar: A synthesis of its agronomic impact beyond carbon sequestration. J. Environ. Qual. 2012, 41, 973–989. [Google Scholar] [CrossRef]
- Ghosh, S.; Ow, L.F.; Wilson, B. Influence of biochar and compost on soil properties and tree growth in a tropical urban environment. Int. J. Environ. Sci. Technol. 2015, 12, 1303–1310. [Google Scholar] [CrossRef]
- Meng, L.; Rahman, A.; Han, S.H.; Kim, S.B.; Cho, M.S.; Park, B.B. Growth of zelkova serrata seedlings in a containerised production system treated with effective microorganisms and biochar. J. Trop. For. Sci. 2018, 30, 49–57. [Google Scholar]
- Román-Dañobeytia, F.; Huayllani, M.; Michi, A.; Ibarra, F.; Loayza-Muro, R.; Vázquez, T.; Rodríguez, L.; García, M. Reforestation with four native tree species after abandoned gold mining in the Peruvian Amazon. Ecol. Eng. 2015, 85, 39–46. [Google Scholar] [CrossRef]
- Rodrigues, R.R.; Gandolfi, S.; Nave, A.G.; Aronson, J.; Barreto, T.E.; Vidal, C.Y.; Brancalion, P.H.S. Large-scale ecological restoration of high-diversity tropical forests in SE Brazil. For. Ecol. Manag. 2011, 261, 1605–1613. [Google Scholar] [CrossRef]
- FAO. Economic Analysis of Forestry Projects: Case Studies; FAO: Rome, Italy, 1979. [Google Scholar]
- Laird, D.; Fleming, P.; Wang, B.; Horton, R.; Karlen, D. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 2010, 158, 436–442. [Google Scholar] [CrossRef] [Green Version]
- Le, H.D.; Smith, C.; Herbohn, J.; Harrison, S. More than just trees: Assessing reforestation success in tropical developing countries. J. Rural Stud. 2012, 28, 5–19. [Google Scholar] [CrossRef] [Green Version]
- Hagemann, N.; Joseph, S.; Schmidt, H.P.; Kammann, C.I.; Harter, J.; Borch, T.; Young, R.B.; Varga, K.; Taherymoosavi, S.; Elliott, K.W.; et al. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nat. Commun. 2017, 8, 1089. [Google Scholar] [CrossRef]
- Xiang, Y.; Deng, Q.; Duan, H.; Guo, Y. Effects of biochar application on root traits: A meta-analysis. GCB Bioenergy 2017, 9, 1563–1572. [Google Scholar] [CrossRef]
- Sovu, M.T.; Savadogo, P.; Odén, P.C. Facilitation of forest landscape restoration on abandoned swidden fallows in laos using mixed-species planting and biochar application. Silva Fenn. 2012, 46, 39–51. [Google Scholar]
Biochar Parameter | Unit | Value |
---|---|---|
Bulk density | kg/m3 | 486 |
Specific surface | m2/g | 147.6 |
Ash content (550 °C) | % (w/w) | 7.8 |
Carbon | % (w/w) | 87.6 |
Total Nitrogen | % (w/w) | 1.07 |
H/Corg ratio (molar) | - | 0.19 |
pH in CaCl2 | - | 9.6 |
Calcium (Ca) | % (w/w) | 0.5 |
Magnesium (Mg) | % (w/w) | 0.3 |
Potassium (K) | % (w/w) | 2.1 |
Phosphorus | % (w/w) | 0.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lefebvre, D.; Román-Dañobeytia, F.; Soete, J.; Cabanillas, F.; Corvera, R.; Ascorra, C.; Fernandez, L.E.; Silman, M. Biochar Effects on Two Tropical Tree Species and Its Potential as a Tool for Reforestation. Forests 2019, 10, 678. https://doi.org/10.3390/f10080678
Lefebvre D, Román-Dañobeytia F, Soete J, Cabanillas F, Corvera R, Ascorra C, Fernandez LE, Silman M. Biochar Effects on Two Tropical Tree Species and Its Potential as a Tool for Reforestation. Forests. 2019; 10(8):678. https://doi.org/10.3390/f10080678
Chicago/Turabian StyleLefebvre, David, Francisco Román-Dañobeytia, Judith Soete, France Cabanillas, Ronald Corvera, César Ascorra, Luis E. Fernandez, and Miles Silman. 2019. "Biochar Effects on Two Tropical Tree Species and Its Potential as a Tool for Reforestation" Forests 10, no. 8: 678. https://doi.org/10.3390/f10080678