High Resolution Maps of Climatological Parameters for Analyzing the Impacts of Climatic Changes on Swiss Forests
Abstract
:1. Introduction
2. Maps of Climatological Forest Parameters
2.1. Air Temperature
2.1.1. Interpolation
2.1.2. Local Temperature Corrections
2.2. Daily Temperature Variation
2.3. Average First and Last Freezing Day of the Year
2.4. Relative Air Humidity
2.5. Solar Radiation
2.6. Foehn Conditions
- Relative air humidity: during the day < = 50%, at night < = 55%.
- Wind speed: > = 5 km/h
- Wind direction range: typical wind direction in ° with foehn +/− 60°
3. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability
References
- Grêt-Regamey, A.; Brunner, S.H.; Kienast, F. Mountain Ecosystem Services: Who Cares? Mt. Res. Dev. 2012, 32, S23–S34. [Google Scholar] [CrossRef]
- Klein, J.A.; Tucker, C.M.; Steger, C.E.; Nolin, A.; Reid, R.; Hopping, K.A.; Yeh, E.T.; Pradhan, M.S.; Taber, A.; Molden, D.; et al. An integrated community and ecosystem-based approach to disaster risk reduction in mountain systems. Environ. Sci. Policy 2019, 94, 143–152. [Google Scholar] [CrossRef]
- Kulakowski, D.; Bebi, P.; Rixen, C. The interacting effects of land use change, climate change and suppression of natural disturbances on landscape forest structure in the Swiss Alps. Oikos 2011, 120, 216–225. [Google Scholar] [CrossRef]
- Moos, C.; Fehlmann, M.; Trappmann, D.; Stoffel, M.; Dorren, L. Integrating the mitigating effect of forests into quantitative rockfall risk analysis—Two case studies in Switzerland. Int. J. Disaster Risk Reduct. 2017, 32, 55–74. [Google Scholar] [CrossRef]
- Moos, C.; Toe, D.; Bourrier, F.; Knüsel, S.; Stoffel, M.; Dorren, L. Assessing the effect of invasive tree species on rockfall risk—The case of Ailanthus altissima. Ecol. Eng. 2019, 131, 63–72. [Google Scholar] [CrossRef]
- Reyer, C.P.O.; Bathgate, S.; Blennow, K.; Borges, J.G.; Bugmann, H.; Delzon, S.; Faias, S.P.; Garcia-Gonzalo, J.; Gardiner, B.; Gonzalez-Olabarria, J.R.; et al. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests? Environ. Res. Lett. 2017, 12, 034027. [Google Scholar] [CrossRef] [PubMed]
- Zischg, A.; Galatioto, N.; Deplazes, S.; Weingartner, R.; Mazzorana, B. Modelling Spatiotemporal Dynamics of Large Wood Recruitment, Transport, and Deposition at the River Reach Scale during Extreme Floods. Water 2018, 10, 1134. [Google Scholar] [CrossRef]
- Grêt-Regamey, A.; Bebi, P.; Bishop, I.D.; Schmid, W.A. Linking GIS-based models to value ecosystem services in an Alpine region. J. Environ. Manag. 2008, 89, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Kräuchi, N.; Brang, P.; Schönenberger, W. Forests of mountainous regions: Gaps in knowledge and research needs. For. Ecol. Manag. 2000, 132, 73–82. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Rutherford, G.N.; Bebi, P.; Edwards, P.J.; Zimmermann, N.E. Assessing land-use statistics to model land cover change in a mountainous landscape in the European Alps. Ecol. Model. 2008, 212, 460–471. [Google Scholar] [CrossRef]
- Huber, N.; Bugmann, H.; Lafond, V. Global sensitivity analysis of a dynamic vegetation model: Model sensitivity depends on successional time, climate and competitive interactions. Ecol. Model. 2018, 368, 377–390. [Google Scholar] [CrossRef]
- Seidl, R.; Fernandes, P.M.; Fonseca, T.F.; Gillet, F.; Jönsson, A.M.; Merganičová, K.; Netherer, S.; Arpaci, A.; Bontemps, J.-D.; Bugmann, H.; et al. Modelling natural disturbances in forest ecosystems: A review. Ecol. Model. 2011, 222, 903–924. [Google Scholar] [CrossRef]
- Zischg, A. Floodplains and Complex Adaptive Systems—Perspectives on Connecting the Dots in Flood Risk Assessment with Coupled Component Models. Systems 2018, 6, 9. [Google Scholar] [CrossRef]
- Grêt-Regamey, A.; Brunner, S.H.; Altwegg, J.; Christen, M.; Bebi, P. Integrating Expert Knowledge into Mapping Ecosystem Services Trade-offs for Sustainable Forest Management. Ecol. Soc. 2013, 18, 34. [Google Scholar] [CrossRef]
- Pluess, A.R.; Augustin, S.; Brang, P. Wald im Klimawandel. Grundlagen für Adaptationsstrategien; 1. Auflage; Haupt Verlag: Bern, Switzerland, 2016; ISBN 3258079951. [Google Scholar]
- Fabian, Y.; Bollmann, K.; Brang, P.; Heiri, C.; Olschewski, R.; Rigling, A.; Stofer, S.; Holderegger, R. How to close the science-practice gap in nature conservation? Information sources used by practitioners. Biol. Conserv. 2019, 235, 93–101. [Google Scholar] [CrossRef]
- Ravetz, J. The post-normal science of precaution. Futures 2004, 36, 347–357. [Google Scholar] [CrossRef]
- Huber, B.; Zischg, A.; Burnand, J.; Frehner, M.; Carraro, G. Mit welchen Klimaparametern kann man Grenzen plausibel erklären, die in NaiS (Nachhaltigkeit und Erfolgskontrolle im Schutzwald) verwendet werden um Ökogramme auszuwählen? Schlussbericht des Projektes im Forschungsprogramm “Wald und Klimawandel” des Bundesamtes für Umwelt BAFU, Bern und der Eidg. Forschungsanstalt WSL; ETH Zurich: Birmensdorf, Switzerland, 2015. [Google Scholar]
- Gharari, S.; Hrachowitz, M.; Fenicia, F.; Gao, H.; Savenije, H.H.G. Using expert knowledge to increase realism in environmental system models can dramatically reduce the need for calibration. Hydrol. Earth Syst. Sci. 2014, 18, 4839–4859. [Google Scholar] [CrossRef] [Green Version]
- Staffler, H.; Pollinger, R.; Zischg, A.; Mani, P. Spatial variability and potential impacts of climate change on flood and debris flow hazard zone mapping and implications for risk management. Nat. Hazards Earth Syst. Sci. 2008, 8, 539–558. [Google Scholar] [CrossRef] [Green Version]
- Zischg, A.; Fuchs, S.; Keiler, M.; Meißl, G. Modelling the system behaviour of wet snow avalanches using an expert system approach for risk management on high alpine traffic roads. Nat. Hazards Earth Syst. Sci. 2005, 5, 821–832. [Google Scholar] [CrossRef] [Green Version]
- Zischg, A.; Schober, S.; Sereinig, N.; Rauter, M.; Seymann, C.; Goldschmidt, F.; Bäk, R.; Schleicher, E. Monitoring the temporal development of natural hazard risks as a basis indicator for climate change adaptation. Nat. Hazards 2013, 67, 1045–1058. [Google Scholar] [CrossRef]
- Zischg, A. High Resolution Maps of Climatological Parameters for Analyzing the Impacts of Climatic Changes on Swiss Forests. Zenodo, 2019. Available online: https://doi.org/10.5281/zenodo.3245891 (accessed on 24 July 2019). [CrossRef]
- dhm25, swisstopo: Knitz, Switzerland, 2012.
- Z’Graggen, L. Strahlungsbilanz der Schweiz. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2001. [Google Scholar]
- Volken, D. Mesoklimatische Temperaturverteilung im Rhone-und Vispertal. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2008. [Google Scholar]
Map Abbreviation | Parameter | Unit | Period |
---|---|---|---|
TJANMIN6190 | mean temperature low in January | °C | 1961–1990 |
TJANMAX6190 | mean temperature high in January | °C | 1961–1990 |
TJANMEAN6190 | mean temperature in January | °C | 1961–1990 |
TAPRMIN6190 | mean temperature low in April | °C | 1961–1990 |
TAPRMAX6190 | mean temperature high in April | °C | 1961–1990 |
TAPRMEAN6190 | mean temperature in April | °C | 1961–1990 |
TJULMIN6190 | mean temperature low in July | °C | 1961–1990 |
TJULMAX6190 | mean temperature high in July | °C | 1961–1990 |
TJULMEAN6190 | mean temperature in July | °C | 1961–1990 |
TOCTMIN6190 | mean temperature low in October | °C | 1961–1990 |
TOCTMAX6190 | mean temperature high in October | °C | 1961–1990 |
TOCTMEAN6190 | mean temperature in October | °C | 1961–1990 |
TYYMIN6190 | mean temperature low in the year | °C | 1961–1990 |
TYYMAX6190 | mean temperature high in the year | °C | 1961–1990 |
TYYMEAN6190 | mean temperature in the year | °C | 1961–1990 |
TAMJJASMEAN6190 | mean temperature April–September | °C | 1961–1990 |
TABSMIN | absolute minimum temperature of the period | °C | 1894–1990 |
TABSMAX | absolute maximum temperature of the period | °C | 1894–1990 |
TJANMIN9110 | mean temperature low in January | °C | 1981–2010 |
TJANMAX8110 | mean temperature high in January | °C | 1981–2010 |
TJANMEAN8110 | mean temperature in January | °C | 1981–2010 |
TAPRMIN8110 | mean temperature low in April | °C | 1981–2010 |
TAPRMAX8110 | mean temperature high in April | °C | 1981–2010 |
TAPRMEAN8110 | mean temperature in April | °C | 1981–2010 |
TJULMIN8110 | mean temperature low in July | °C | 1981–2010 |
TJULMAX8110 | mean temperature high in July | °C | 1981–2010 |
TJULMEAN9110 | mean temperature in July | °C | 1981–2010 |
TOCTMIN8110 | mean temperature low in October | °C | 1981–2010 |
TOCTMAX9110 | mean temperature high in October | °C | 1981–2010 |
TOCTMEAN8110 | mean temperature in October | °C | 1981–2010 |
TYYMIN8110 | mean temperature low in the year | °C | 1981–2010 |
TYYMAX8110 | mean temperature high in the year | °C | 1981–2010 |
TYYMEAN8110 | mean temperature in the year | °C | 1981–2010 |
COLDAIRLAYER | temperature difference between the upper and lower boundary of the cold air layer, the altitude of the lower and upper boundary of the cold air layer | °C m a.s.l. | 1981–2010 |
Map Abbreviation | Parameter | Unit | Period |
---|---|---|---|
CONTJAN | mean daily temperature variation in January | °C | 1981–2010 |
CONTAPR | mean daily temperature variation in April | °C | 1981–2010 |
CONTJUL | mean daily temperature variation in July | °C | 1981–2010 |
CONTOCT | mean daily temperature variation in October | °C | 1981–2010 |
CONTYY | mean daily temperature variation in the year | °C | 1981–2010 |
CONTABS | absolute daily temperature variation in the period | °C | 1894–1990 |
Map Abbreviation | Parameter | Unit | Period |
---|---|---|---|
LFD | average last frost day in a year | no. of day | 1981–2010 |
FFD | average first frost day in a year | no. of day | 1981–2010 |
VEGPER | durations of frost-free vegetation period | days | 1981–2010 |
Map Abbreviation | Parameter | Unit | Period |
---|---|---|---|
MLFJAN8110 | mean daily relative air humidity in January | % | 1981–2010 |
MLFAPR8110 | mean daily relative air humidity in April | % | 1981–2010 |
MLFJUL8110 | mean daily relative air humidity in July | % | 1981–2010 |
MLFOCT8110 | mean daily relative air humidity in October | % | 1981–2010 |
MLFYY8110 | mean relative air humidity in the year | % | 1981–2010 |
LFJAN8110 | mean relative air humidity at 1:30 p.m. in January | % | 1981–2010 |
LFAPR8110 | mean relative air humidity at 1:30 p.m. in April | % | 1981–2010 |
LFJUL8110 | mean relative air humidity at 1:30 p.m. in July | % | 1981–2010 |
LFOCT8110 | mean relative air humidity at 1:30 p.m. in October | % | 1981–2010 |
LFYY8110 | mean relative air humidity at 1:30 p.m. in the year | % | 1981–2010 |
Map Abbreviation | Parameter | Unit | Period |
---|---|---|---|
GLOBRADJAN | average global radiation in January | Wh/m2 | 1984–1993 |
GLOBRADAPR | average global radiation in April | Wh/m2 | 1984–1993 |
GLOBRADJUL | average global radiation in July | Wh/m2 | 1984–1993 |
GLOBRADOCT | average global radiation in October | Wh/m2 | 1984–1993 |
GLOBRADYY | average annual global | Wh/m2 | 1984–1993 |
Map Abbreviation | Parameter | Unit | Period |
---|---|---|---|
FOEHNHJAN | mean frequency of foehn conditions in January (time with foehn/time) | - | 1981–2010 |
FOEHNHAPR | mean frequency of foehn conditions in April (time with foehn/time) | - | 1981–2010 |
FOEHNHJUL | mean frequency of foehn conditions in July (time with foehn/time) | - | 1981–2010 |
FOEHNHOCT | mean frequency of foehn conditions in October (time with foehn/time) | - | 1981–2010 |
FOEHNHYY | mean frequency of foehn conditions in the year (time with foehn/time) | - | 1981–2010 |
FOEHNTJAN8110 | mean temperature during foehn conditions in January | °C | 1981–2010 |
FOEHNTAPR8110 | mean temperature during foehn conditions in April | °C | 1981–2010 |
FOEHNTJUL8110 | mean temperature during foehn conditions in July | °C | 1981–2010 |
FOEHNTOCT8110 | mean temperature during foehn conditions in October | °C | 1981–2010 |
FOEHNTYY8110 | mean temperature during foehn conditions in the year | °C | 1981–2010 |
FOEHNFJAN | mean relative air humidity during foehn conditions in January | % | 1981–2010 |
FOEHNFAPR | mean relative air humidity during foehn conditions in April | % | 1981–2010 |
FOEHNFJUL | mean relative air humidity during foehn conditions in July | % | 1981–2010 |
FOEHNFOCT | mean relative air humidity during foehn conditions in October | % | 1981–2010 |
FOEHNFYY | mean relative air humidity during foehn conditions in the year | % | 1981–2010 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zischg, A.P.; Gubelmann, P.; Frehner, M.; Huber, B. High Resolution Maps of Climatological Parameters for Analyzing the Impacts of Climatic Changes on Swiss Forests. Forests 2019, 10, 617. https://doi.org/10.3390/f10080617
Zischg AP, Gubelmann P, Frehner M, Huber B. High Resolution Maps of Climatological Parameters for Analyzing the Impacts of Climatic Changes on Swiss Forests. Forests. 2019; 10(8):617. https://doi.org/10.3390/f10080617
Chicago/Turabian StyleZischg, Andreas Paul, Päivi Gubelmann, Monika Frehner, and Barbara Huber. 2019. "High Resolution Maps of Climatological Parameters for Analyzing the Impacts of Climatic Changes on Swiss Forests" Forests 10, no. 8: 617. https://doi.org/10.3390/f10080617
APA StyleZischg, A. P., Gubelmann, P., Frehner, M., & Huber, B. (2019). High Resolution Maps of Climatological Parameters for Analyzing the Impacts of Climatic Changes on Swiss Forests. Forests, 10(8), 617. https://doi.org/10.3390/f10080617