A Holistic View of Soils in Delivering Ecosystem Services in Forests: A Case Study in South Korea
Abstract
:1. Introduction
2. Material and Methods
2.1. The Forest Biomass and Dead Organic Matter Carbon (FBDC) Model
2.2. Scenarios
3. Results and Discussion
3.1. SOC Dynamics and Accumulation
3.1.1. Influence of Biomass Production on SOC Dynamics
3.1.2. Influence of the Management on SOC Dynamics
3.1.3. Selecting Most Suitable Management Practices
3.2. Assessment of Synergies and Trade-Offs between Soil Functions, Management Practices, and Related Ecosystem Services
3.2.1. Identifying Key Components of the Ecological System to Strengthen Ecosystem Resilience
3.2.2. Relationships between the Ecological Infrastructure, Ecosystem Services, and Management Practices
3.3. Going beyond Carbon Sequestration: Towards a Holistic Perspective of Soil Ecosystem Services and Human Well-Being
3.4. Lessons for Forest Management Policies
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Naeem, S.; Limburg, K.; Paruelo, J.; O’Neill, R.V.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- MEA. Millennium Ecosystem Assessment (MEA): Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- TEEB. The Economics of Ecosystems and Biodiversity (TEEB): TEEB for Local and Regional Policy Makers; Progress Press: Valletta, Malta, 2010. [Google Scholar]
- Winter, S.; Bauer, T.; Strauss, P.; Kratschmer, S.; Paredes, D.; Popescu, D.; Landa, B.; Guzmán, G.; Gómez, J.A.; Guemion, M.; et al. Effects of vegetation management intensity on biodiversity and ecosystem services in vineyards: A meta-analysis. J. Appl. Ecol. 2018, 55, 2484–2495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daryanto, S.; Fu, B.; Wang, L.; Jacinthe, P.A.; Zhao, W. Quantitative synthesis on the ecosystem services of cover crops. Earth Sci. Rev. 2018, 185, 357–373. [Google Scholar] [CrossRef]
- Torralba, M.; Fagerholm, N.; Burgess, P.J.; Moreno, G.; Plieninger, T. Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agric. Ecosyst. Environ. 2016, 230, 150–161. [Google Scholar] [CrossRef] [Green Version]
- Ojea, E.; Loureiro, M.; Barrio, M. Ecosystem Services and REDD: Estimating the Benefits of Non-Carbon Services in Worldwide Forests. World Dev. 2016, 78, 246–261. [Google Scholar] [CrossRef]
- Setten, G.; Brown, K.M. Ecosystem services as an integrative framework: What is the potential? Land Use Policy 2018, 75, 549–556. [Google Scholar] [CrossRef]
- Sotirov, M.; Sallnäs, O.; Eriksson, L.O. Forest owner behavioral models, policy changes, and forest management. An agent-based framework for studying the provision of forest ecosystem goods and services at the landscape level. For. Policy Econ. 2017, 103, 79–89. [Google Scholar] [CrossRef]
- Wang, T.; He, G.S.; Zhou, Q.L.; Gao, J.Z.; Deng, L.J. Designing a framework for marine ecosystem assets accounting. Ocean Coast. Manag. 2018, 163, 92–100. [Google Scholar] [CrossRef]
- Dominati, E.J.; Patterson, M.G.; Mackay, A.D. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol. Econ. 2010, 69, 1858–1868. [Google Scholar] [CrossRef]
- Bennet, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef]
- Gaiser, T.; Stahr, K. Soil organic carbon, soil formation and soil fertility. In Ecosystem Services and Carbon Sequestration in the Biosphere; Lal, R., Lorenz, K., Hüttl, R.F., Schneider, B.U., Braun, J., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 407–417. [Google Scholar]
- Jónsson, J.O.G.; Davíðsdóttir, B. Classification and valuation of soil ecosystem services. Agric. Syst. 2016, 145, 24–38. [Google Scholar] [CrossRef]
- Lal, R. Societal value of soil carbon. J. Soil Water Conserv. 2014, 69, 186–192. [Google Scholar] [CrossRef]
- Adhikari, K.; Hartemink, A.E. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Smith, P. Soil carbon sequestration and biochar as negative emission technologies. Glob. Chang. Biol. 2016, 22, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Fuss, S.; Lamb, W.F.; Callaghan, M.W.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; de Oliveira Garcia, W.; Hartmann, J.; Khanna, T.; et al. Negative emissions—Part 2: Costs, potentials and side effects. Environ. Res. Lett. 2018, 13, 063002. [Google Scholar] [CrossRef]
- Minx, J.C.; Lamb, W.F.; Callaghan, M.W.; Fuss, S.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; de Oliveira Garcia, W.; Hartmann, J.; et al. Negative emissions—Part 1: Research landscape and synthesis. Environ. Res. Lett. 2018, 13, 062001. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Summary for policymakers. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; WMO: Geneva, Switzerland, 2018. [Google Scholar]
- Smith, P. Carbon sequestration in croplands: The potential in Europe and the global context. Eur. J. Agron. 2004, 20, 229–236. [Google Scholar] [CrossRef]
- Aguilera, E.; Lassaletta, L.; Gattingerd, A.; Gimenoe, B. Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: A meta-analysis. Agric. Ecosyst. Environ. 2013, 168, 25–36. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops—A meta-analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, R.; Xue, J.F.; Pu, C.; Zhang, X.Q.; Liu, S.L.; Chen, F.; Lal, R.; Zhang, H.L. Management-induced changes to soil organic carbon in China: A meta-analysis. Adv. Agron. 2015, 134, 1–50. [Google Scholar]
- Vicente-Vicente, J.L.; García-Ruiz, R.; Francaviglia, R.; Aguilera, E.; Smith, P. Soil carbon sequestration rates under Mediterranean woody crops using recommended management practices: A meta-analysis. Agric. Ecosyst. Environ. 2016, 235, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Dignac, M.-F.; Derrien, D.; Barré, P.; Barot, S.; Cécillon, L.; Chenu, C.; Chevallier, T.; Freschet, G.T.; Garnier, P.; Guenet, B.; et al. Increasing soil carbon storage: Mechanisms, effects of agricultural practices and proxies. A review. Agron. Sustain. Dev. 2017, 37, 14. [Google Scholar] [CrossRef]
- Francaviglia, R.; Di Bene, C.; Farina, R.; Salvati, L.; Vicente-Vicente, J.L. Assessing “4 per 1000” soil organic carbon storage rates under Mediterranean climate: A comprehensive data analysis. Mitig. Adapt. Strateg. Glob. Chang. 2019, 24, 1–24. [Google Scholar] [CrossRef]
- Francaviglia, R.; Ledda, L.; Farina, R. Organic carbon and ecosystem services in agricultural soils of the Mediterranean Basin. In Sustainable Agriculture Reviews 28; Gaba, S., Smith, B., Lichtfouse, E., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 183–210. [Google Scholar]
- Lal, R.; Lorenz, K.; Hüttl, R.F.; Schneider, B.U.; Braun, J. Ecosystem Services and Carbon Sequestration in the Biosphere; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Andrea, F.; Binib, C.; Amaduccia, S. Soil and ecosystem services: Current knowledge and evidences from Italian case studies. Appl. Soil Ecol. 2018, 123, 693–698. [Google Scholar] [CrossRef]
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef] [Green Version]
- Denman, K.; Brasseur, G.; Chidthaisong, A.; Ciais, P.; Cox, P.; Dickinson, R.; Hauglustaine, D.; Heinze, C.; Holland, E.; Jacob, D.; et al. Couplings between changes in the climate system and biogeochemistry. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., Miller, H., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 500–587. [Google Scholar]
- Jandl, R.; Schüler, S.; Schindlbacher, A.; Tomiczek, C. Forests, carbon pool, and timber production. In Ecosystem Services and Carbon Sequestration in the Biosphere; Lal, R., Lorenz, K., Hüttl, R.F., Schneider, B.U., Braun, J., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 101–130. [Google Scholar]
- Kuzyakov, Y.; Domanski, G. Carbon input by plants into the soil. Review. J. Soil Sci. Plant Nutr. 2000, 163, 421–431. [Google Scholar] [CrossRef]
- Ludwig, B.; Schulz, E.; Merbach, I.; Rethemeyer, J.; Flessa, H. Predictive modelling of the C dynamics for eight variants of the long-term static fertilization experiment in Bad Lauchstädt using the Rothamsted Carbon Model. Eur. J. Soil Sci. 2007, 58, 1155–1163. [Google Scholar] [CrossRef]
- Nannipieri, P.; Ascher, J.; Ceccherini, M.T.; Guerri, G.; Renella, G.; Pietramellara, G. Recent Advances in Functional Genomics and Proteomics of Plant Associated Microbes. In Molecular Mechanisms of Plant and Microbe Coexistence Soil Biology; Nautiyal, C.S., Dion, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 15, pp. 215–241. [Google Scholar]
- Kuzyakov, Y.; Friedel, J.; Stahr, K. Review of mechanisms and quantification of primig effects. Soil Biol. Biochem. 2000, 32, 1485–1498. [Google Scholar] [CrossRef]
- Lee, J.; Lim, C.H.; Kim, G.S.; Markandya, A.; Chowdhury, S.; Kim, S.J.; Lee, W.K.; Son, Y. Economic viability of the national-scale forestation program: The case of success in the Republic of Korea. Ecosyst. Serv. 2018, 29, 40–46. [Google Scholar] [CrossRef]
- Bae, J.S.; Joo, R.W.; Kim, Y.S. Forest transition in South Korea: Reality, path and drivers. Land Use Policy 2012, 29, 198–207. [Google Scholar] [CrossRef]
- Korea Forest Service (KFS). Statistical Yearbook of Forestry; Korea Forest Service: Deajeon, Korea, 2016.
- Choi, S.D.; Chang, Y.S. Factors affecting the distribution of the rate of carbon uptake by forests in South Korea. Environ. Sci. Technol. 2004, 38, 484–488. [Google Scholar] [CrossRef]
- Li, X.; Yi, M.J.; Son, Y.; Jin, G.; Han, S.S. Forest biomass carbon accumulation in Korea from 1954 to 2007. Scand. J. For. Res. 2010, 25, 554–563. [Google Scholar] [CrossRef]
- Fang, J.; Guo, Z.; Hu, H.; Kato, T.; Muraoka, H.; Son, Y. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Glob. Chang. Biol. 2014, 20, 2019–2030. [Google Scholar] [CrossRef]
- Piao, S.L.; Ito, A.; Li, S.G.; Huang, Y.; Ciais, P.; Wang, X.H.; Peng, S.S.; Nan, H.J.; Zhao, C.; Ahlström, A.; et al. The carbon budget of terrestrial ecosystems in East Asia over the last two decades. Biogeosciences 2012, 9, 3571–3586. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.; Kwak, D.A.; Cui, G.; Lee, W.K.; Kwak, H.; Ito, A.; Son, Y.; Jeon, S. Estimation of the ecosystem carbon budget in South Korea between 1999 and 2008. Ecol. Res. 2013, 28, 1045–1059. [Google Scholar] [CrossRef]
- Lee, J.; Yoon, T.K.; Han, S.; Kim, S.; Yi, M.J.; Park, G.S.; Kim, C.; Son, Y.M.; Kim, R.; Son, Y. Estimating the carbon dynamics of South Korean forests from 1954 to 2012. Biogeosciences 2014, 11, 4637. [Google Scholar] [CrossRef]
- Lee, J.; Tolunay, D.; Makineci, E.; Çömez, A.; Son, Y.M.; Kim, R.; Son, Y. Estimating the age-dependent changes in carbon stocks of Scots pine (Pinus sylvestris L.) stands in Turkey. Ann. For. Sci. 2016, 73, 523–531. [Google Scholar] [CrossRef]
- Kim, M. Impacts Assessment of Climate Change and Management Strategies on Carbon, Water, and Wood Products in Korean Forests. Ph.D. Thesis, Korea University, Seoul, Korea, 2018. Available online: http://dcollection.korea.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000080712 (accessed on 20 July 2018).
- Piao, D.; Kim, M.; Choi, G.M.; Moon, J.; Yu, H.; Lee, W.K.; Wang, S.W.; Jeon, S.W.; Son, Y.; Son, Y.M.; et al. Development of an Integrated DBH Estimation Model Based on Stand and Climatic Conditions. Forests 2018, 9, 155. [Google Scholar] [CrossRef]
- Kim, M.; Lee, W.; Kurz, W.; Kwak, D.; Morken, S.; Smyth, C.; Ryu, D. Estimating carbon dynamics in forest carbon pools under IPCC standards in South Korea using CBM-CFS3. iForest 2017, 10, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Prada, M.; Bravo, F.; Berdasco, L.; Canga, E.; Martínez-Alonso, C. Carbon sequestration for different management alternatives in sweet chestnut coppice in northern Spain. J. Clean. Prod. 2016, 135, 1161–1169. [Google Scholar] [CrossRef]
- Tallis, H.; Kareiva, P. Ecosystem services. Curr. Biol. 2005, 15, 746–748. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, S.R.; Mooney, H.A.; Agard, J.; Capistrano, D.; Defries, R.S.; Diaz, S.; Dietz, T.; Duraiappah, A.K.; Oteng-Yeboah, A.; Pereira, H.M.; et al. Science for managing ecosystem services: Beyond the millennium ecosystem assessment. Proc. Natl. Acad. Sci. USA 2009, 106, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
- Wiesmeier, M.; Urbanski, U.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; Van Wesemael, B.; Rabot, E.; Ließ, M.; García-Franco, N.; et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.R. Catastrophic regime shifts in ecosystems: Linking theory to observation. Trends Ecol. Evol. 2003, 18, 648–656. [Google Scholar] [CrossRef]
- Bennett, E.M.; Cumming, G.; Peterson, G.D. A Systems Model Approach to Determining Resilience Surrogates for Case Studies. Ecosystems 2005, 8, 945–957. [Google Scholar] [CrossRef]
- Nguyen, C. Rhizodeposition of organic C by plants: Mechanisms and controls. Agronomy 2003, 23, 375–396. [Google Scholar] [CrossRef]
- Haichar, F.Z.; Santaella, C.; Heulin, T.; Achouak, W. Root exudates mediated interactions belowground. Soil Biol. Biochem. 2014, 77, 69–80. [Google Scholar] [CrossRef]
- Wardle, D.A. A comparative-assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol. Rev. Camb. Philos. Soc. 1992, 67, 321–358. [Google Scholar] [CrossRef]
- Anderson, J.P.E.; Domsch, K.H. Quantities of plant nutrients in the microbial biomass of selected soils. Soil Sci. 1980, 130, 211–216. [Google Scholar] [CrossRef]
- de Andrade Bonetti, J.; Anghinoni, I.; de Moraes, M.T.; Fink, J.R. Resilience of soils with different texture, mineralogy and organic matter under long-term conservation systems. Soil Tillage Res. 2017, 174, 104–112. [Google Scholar] [CrossRef]
- Feger, K.H.; Hawtree, D. Soil carbon and water security. In Ecosystem Services and Carbon Sequestration in the Biosphere; Lal, R., Lorenz, K., Hüttl, R.F., Schneider, B.U., Braun, J., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 79–99. [Google Scholar]
- Ilstedt, U.; Tobella, A.B.; Bazié, H.R.; Bayala, J.; Verbeeten, E.; Nyberg, G.; Sanou, J.; Benegas, L.; Murdiyarso, D.; Ludon, H.; et al. Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. Sci. Rep. 2016, 6, 21930. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Lim, C.H.; Kim, S.; Lee, J.; Son, Y.; Lee, W.K. Effect of national-scale afforestation on forest water supply and soil loss in South Korea, 1971–2010. Sustainability 2017, 9, 1017. [Google Scholar] [CrossRef]
- UN Development Programme. Sustainable Development Goals. Policy Brief Series NO.1. Valuation of Reforestation in Terms of Disaster Risk Reduction: A Technical Study from the Republic of Korea; UNDP: Seoul, Korea, 2017; Available online: http://www.undp.org/content/dam/uspc/docs/USPC%20Policy%20Brief%20No.1.pdf (accessed on 15 June 2018).
- Kim, M.; Lee, W.K.; Son, Y.; Yoo, S.; Choi, G.M.; Chung, D.J. Assessing the impacts of topographic and climatic factors on radial growth of major forest forming tree species of South Korea. For. Ecol. Manag. 2017, 404, 269–279. [Google Scholar] [CrossRef] [Green Version]
- Ryan, M.G.; Binkley, D.; Fownes, J.H. Age-related decline in forest productivity: Pattern and process. Adv. Ecol. Res. 1997, 27, 213–262. [Google Scholar]
- Scheffer, M.; Carpenter, S.R.; Foley, J.; Folke, C.; Walker, B.H. Catastrophic shifts in ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Gamefeldt, L.; Hillebrand, H.; Jonsson, P.R. Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 2008, 89, 1223–1231. [Google Scholar] [CrossRef]
- Mace, G.M.; Norris, K.; Fitter, A.H. Biodiversity and ecosystem services: A multi-layered relationship. Trends Ecol. Evol. 2012, 27, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Marschner, P.; Neumann, G.; Kania, A.; Weisskopf, L.; Lieberei, R. Spatial and temporal dynamics of bacterial community composition in the rhizosphere of cluster roots of white lupin (Lupinus albus L.). Plant Soil 2002, 246, 167–174. [Google Scholar] [CrossRef]
- Gomes, N.C.M. Dynamics of fungal communities in bulk and maize rizosphere soil in the tropics. Appl. Environ. Microbiol. 2003, 69, 3758–3766. [Google Scholar] [CrossRef] [PubMed]
- Nicol, G.W.; Glover, L.A.; Prosser, J.I. Spatial analysis of archaeal community structure in grassland soil. Appl. Environ. Microbiol. 2003, 69, 7420–7429. [Google Scholar] [CrossRef] [PubMed]
- González-Sánchez, E.J.; Mkomwa, S.; Conway, G.; Kassam, A.; Ordóñez-Fernández, R.; Moreno-García, M.; Repullo-Ruibériz de Torres, M.; Gil-Ribes, J.A.; Basch, G.; Veroz-González, O.; et al. Making Climate Change Mitigation and Adaptability Real in Africa with Conservation Agriculture. 2018. Available online: https://dspace.uevora.pt/rdpc/bitstream/10174/23936/1/Conservation_Agriculture_Climate_Change_Africa%281%29.pdf (accessed on 5 November 2018).
- Mayer, H. Waldbau auf Soziologisch-Ökologischer Grundlage. G.; Fischer: Stuttgart, Germany, 1984. [Google Scholar]
- Oliver, C.D.; Larsen, B.C. Forest Stand Dynamics; McGraw-Hill Inc.: New York, NY, USA, 1990. [Google Scholar]
- Puettmann, K.J.; Coates, K.D.; Messier, C. A Critique of Silviculture—Managing for Complexity; Island Press: Washington, DC, USA, 2009. [Google Scholar]
- Loureau, M.; Naeem, S.; Inchausti, P. Biodiversity and Ecosystem Functioning: Synthesis and Perspectives; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- De Deyn, G.B. Ecosystem carbon and soil biodiversity. In Ecosystem Services and Carbon Sequestration in the Biosphere; Lal, R., Lorenz, K., Hüttl, R.F., Schneider, B.U., Braun, J., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 131–153. [Google Scholar]
- Ministerial Conference on the Protection of Forests in Europe (MCPFE). Improved Pan-European Indicators for Sustainable Forest Management. 2003. Available online: https://www.foresteurope.org/documentos/improved_indicators.pdf (accessed on 15 March 2019).
- Holling, C.B. Adaptive Environmental Assessment and Management; John Wiley & Sons: London, UK, 1978. [Google Scholar]
- Convention on Biological Diversity (CBD). Lessons Learned from the Republic of Korea’s National Reforestation Programme, 2014. 2015. Available online: https://www.cbd.int/ecorestoration/doc/Korean-Study_Final-Version-20150106.pdf (accessed on 20 March 2019).
- UN Environment. Emissions Gap Report. 2018. Available online: http://wedocs.unep.org/bitstream/handle/20.500.11822/26895/EGR2018_FullReport_EN.pdf?sequence=1&isAllowed=y (accessed on 15 January 2019).
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Lee, K.B.; Bae, J.S. Factors of success of the clearance policy for slash-and-burn fields in the 1970s. J. Korean For. Soc. 2007, 96, 325–337. [Google Scholar]
- Bae, J.S.; Lee, K.B. Impacts of the substitution of firewood for home use on the forest greening after the 1945 Liberation of Korea. J. Korean For. Soc. 2006, 95, 60–72. [Google Scholar]
- Golub, A.; Lubowski, R.; Piris-Cabezas, P. Balancing Risks from Climate Policy Uncertainties: The Role of Options and Reduced Emissions from Deforestation and Forest Degradation. Ecol. Econ. 2017, 138, 90–98. [Google Scholar] [CrossRef]
Government Commitment | Continued Economic Growth | Economic Incentives |
---|---|---|
Clear quantifiable goals in the national reforestation program | Fuel switch (from fuel wood to coal) | Provision of seedlings |
Strong engagement of all administrative levels | Rural-urban migration (abandoned land) | Loans to villages to establish nurseries |
Education and information, mobilization of citizens | Price guarantees | |
Laws and regulations (e.g., Forest Act, Slash-and-Burn Clearance regulation, enforcement against illegal logging, prohibition of fuel wood flow to urban areas) | Support of farmer livelihoods during Slash-and-Burn Clearance Project | |
Promotion of inter-agency cooperation and coordination | Results-based rewards and grants |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vicente-Vicente, J.L.; Fuss, S.; Song, C.; Lee, J.; Kim, M.; Lee, W.-K.; Son, Y. A Holistic View of Soils in Delivering Ecosystem Services in Forests: A Case Study in South Korea. Forests 2019, 10, 487. https://doi.org/10.3390/f10060487
Vicente-Vicente JL, Fuss S, Song C, Lee J, Kim M, Lee W-K, Son Y. A Holistic View of Soils in Delivering Ecosystem Services in Forests: A Case Study in South Korea. Forests. 2019; 10(6):487. https://doi.org/10.3390/f10060487
Chicago/Turabian StyleVicente-Vicente, José Luis, Sabine Fuss, Cholho Song, Jongyeol Lee, Moonil Kim, Woo-Kyun Lee, and Yowhan Son. 2019. "A Holistic View of Soils in Delivering Ecosystem Services in Forests: A Case Study in South Korea" Forests 10, no. 6: 487. https://doi.org/10.3390/f10060487
APA StyleVicente-Vicente, J. L., Fuss, S., Song, C., Lee, J., Kim, M., Lee, W.-K., & Son, Y. (2019). A Holistic View of Soils in Delivering Ecosystem Services in Forests: A Case Study in South Korea. Forests, 10(6), 487. https://doi.org/10.3390/f10060487