Modeling and Mapping Forest Fire Occurrence from Aboveground Carbon Density in Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Forest Regions
2.2. Aboveground Carbon Density Data (AGCD)
2.3. Forest Fire Data
2.4. Observed Fire Occurrence by AGCD Calculation
2.5. Modeling and Mapping Fire Occurrence from AGCD
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- North, M.; Hurteau, M.; Innes, J. Fire suppression and fuels treatment effects on mixed-conifer carbon stocks and emissions. Ecol. Appl. 2009, 19, 1385–1396. [Google Scholar] [CrossRef] [PubMed]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.; De Fries, R.S.; Jin, Y.; van Leeuwen, T.T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [Google Scholar] [CrossRef] [Green Version]
- Bowman, D.M.; Balch, J.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; et al. The human dimension of fire regimes on Earth. J. Biogeogr. 2011, 38, 2223–2236. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Goodrick, S.L.; Heilman, W.E. Wildland fire emissions, carbon and climate: Wildfire-climate interactions. For. Ecol. Manage. 2014, 317, 80–96. [Google Scholar] [CrossRef]
- Keane, R.E.; Agee, J.K.; Fulé, P. Ecological effects of large fires on US landscapes: Benefit or catastrophe? Int. J. Wildland Fire 2008, 17, 696–712. [Google Scholar] [CrossRef]
- Flannigan, M.A.; Cantin, S.; de Groot, W.J.; Wotton, M.; Newbery, A.; Gowman, L.M. Global wildland fire season severity in the 21st century. For. Ecol. Manage. 2013, 294, 54–61. [Google Scholar] [CrossRef]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef] [Green Version]
- Podschwit, H.R.; Larkin, N.K.; Steel, E.A.; Cullen, A.; Alvarado, E. Multi-Model Forecasts of Very-Large Fire Occurences during the End of the 21st Century. Climates 2018, 6, 100. [Google Scholar] [CrossRef]
- Houghton, R.A. Aboveground Forest Biomass and the Global Carbon Balance. Glob. Chang. Biol. 2005, 11, 945–958. [Google Scholar] [CrossRef]
- Restaino, J.C.; Peterson, D.L. Wildfire and fuel treatment effects on forest carbon dynamics in the western United States. For. Ecol. Manag. 2013, 303, 46–60. [Google Scholar] [CrossRef]
- Hurteau, M.D.; Brooks, M.L. Short- and long-term effects of fire on carbon in us dry temperate forest systems. Biosciences 2011, 61, 139–146. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Moritz, M.A.; Parisien, M.A.; Van Dorn, J.; Hayhoe, K. Global pyrogeography: The current and future distribution of wildfire. PLoS ONE 2009, 4, e5102. [Google Scholar] [CrossRef]
- Fulé, P.Z.; Villanueva-Díaz, J.; Ramos-Gómez, M. Fire regime in a conservation reserve in Chihuahua, México. Can. J. For. Res. 2005, 35, 320–330. [Google Scholar] [CrossRef]
- North, M.P.; Stephens, S.L.; Collins, B.M.; Agee, J.K.; Aplet, G.; Franklin, J.F.; Fulé, P.Z. Reform forest fire management: Agency incentives undermine policy effectiveness. Sciences 2015, 349, 1280–1281. [Google Scholar] [CrossRef] [PubMed]
- Finney, M.A. The challenge of quantitative risk analysis for wildland fire. For. Ecol. Manage. 2005, 211, 7–108. [Google Scholar] [CrossRef]
- Ager, A.A.; Vaillant, N.M.; Finney, M.A. A comparison of landscape fuel treatment strategies to mitigate wildland fire risk in the urban interface and preserve old forest structure. For. Ecol. Manage. 2010, 259, 1556–1570. [Google Scholar] [CrossRef]
- Hurteau, M.; North, M. Fuel treatment effects on tree-based forest carbon storage and emissions under modeled wildfire scenarios. Front. Ecol. Environ. 2009, 7, 409–414. [Google Scholar] [CrossRef] [Green Version]
- Schneider, P.; Roberts, D.A.; Kyriakidis, P.C. A VARI-based relative greenness from MODIS data for computing the fire potential index. Remote Sens. Environ. 2008, 112, 1151–1167. [Google Scholar] [CrossRef]
- Barrio, M.; Loureiro, M.; Chasc, M.L. Aproximación a las pérdidas económicas ocasionadas a corto plazo por los incendios forestales en Galicia en 2006. Econ. Agric. Rec. Nat. 2007, 7, 45–64. [Google Scholar] [CrossRef]
- Barreal, J.; Loureiro, M.L. Modelling spatial patterns and temporal trends of wildfires in Galicia (NW Spain). For. Syst. 2015, 24, e022. [Google Scholar] [Green Version]
- Mavsar, R.; González-Cabán, A.; Varela, E. The State of Development of Fire Management Decision Support Systems in America and Europe. For. Policy Econ. 2013, 29, 45–55. [Google Scholar] [CrossRef]
- Rodríguez y Silva, F.; Molina Martínez, J.R.; González-Cabán, A. A Methodology for Determining Operational Priorities for Prevention and Suppression of Wildland Fires. Int. J. Wildl. Fire 2014, 24, 544–554. [Google Scholar] [CrossRef]
- Ottmar, R.D.; Sandberg, D.V.; Riccardi, C.L.; Prichard, S.J. An overview of the fuel characteristic classification system—Quantifying, classifying, and creating fuelbeds for resource planning. Can. J. For. Res. 2007, 37, 2383–2393. [Google Scholar] [CrossRef]
- Boer, M.; Sadler, R.; Wittkuhn, R.; McCaw, L.; Grierson, P. Long-term impacts of prescribed burning on regional extent and incidence of wildfires-evidence from 50 years of active fire management in SW Australian forests. For. Ecol. Manag. 2009, 259, 132–142. [Google Scholar] [CrossRef]
- Chuvieco, E.; Aguado, I.; Yebra, M.; Nieto, H.; Salas, J.; Martín, M.P.; Vilar, L.; Martínez, J.; Martín, S.; Ibarra, P.; et al. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol. Model. 2010, 221, 46–58. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.Y.B.; Anderson, K.R. An evaluation of spatial and temporal patterns of lightning- and human-caused forest fires in Alberta, Canada, 1980–2007. Int. J. Wildl. Fire 2010, 19, 1059–1072. [Google Scholar] [CrossRef]
- Ordóñez, C.; Saavedra, A.; Rodríguez-Pérez, J.R.; Castedo-Dorado, F.; Covián, E. Using model-based zeostatistics to predict lightning-caused wildfires. Environ. Model. Softw. 2012, 29, 44–50. [Google Scholar] [CrossRef]
- Parisien, M.A.; Parks, S.A.; Krawchuk, M.A.; Little, J.M.; Flannigan, M.D.; Gowman, L.M.; Moritz, M.A. An analysis of controls on fire activity in boreal Canada: Comparing models built with different temporal resolutions. Ecol. Appl. 2014, 24, 1341–1356. [Google Scholar] [CrossRef]
- Nunes, M.C.S.; Vasconcelos, M.J.; Pereira, J.M.C.; Dasgupta, N.; Alldredge, R.J.; Rego, F.J. Land cover type and fire in Portugal: Do fires burn land cover selectively? Landsc. Ecol. 2005, 20, 661–673. [Google Scholar] [CrossRef]
- Moreira, F.; Vaz, P.; Catry, F.; Silva, J.S. Regional variations in wildfire susceptibility of land-cover types in Portugal: Implications for landscape management to minimize fire hazard. Int. J. Wildl. Fire 2009, 18, 563–574. [Google Scholar] [CrossRef]
- Dlamini, W.M. A Bayesian belief network analysis of factors influencing wildfire occurrence in Swaziland. Environ. Model. Soft. 2010, 25, 199–208. [Google Scholar] [CrossRef]
- Ager, A.A.; Preisler, H.K.; Arca, B.; Spano, D.; Salis, M. Wildfire Risk Estimation In The Mediterranean Area. Environmetrics 2014, 25, 384–396. [Google Scholar] [CrossRef]
- Chang, Y.; Zhu, Z.L.; Bu, R.C.; Chen, H.W.; Feng, Y.T.; Li, Y.H.; Hu, Y.M.; Wang, Z.C. Predicting fire occurrence patterns with logistic regression in Heilongjiang Province, China. Landsc. Ecol. 2013, 28, 1989–2004. [Google Scholar] [CrossRef]
- Natario, I.; Oliveira, M.M.; Marques, S. Using INLA to Estimate a Highly Dimensional Spatial Model for Forest Fires in Portugal. In New Advances in Statistical Modeling and Applications, Studies in Theoretical and Applied Statistics; Pacheco, A.R., Oliveira, M.d.R., Paulino, C.D., Eds.; Springer International Publishing: Basel, Switzerland, 2014; p. 239. [Google Scholar]
- Archibald, S.; Roy, D.P.; van Wilgen, B.W.; Scholes, R.J. What limits fire? An examination of drivers of burnt area in Southern Africa. Glob. Chang. Biol. 2009, 15, 613–630. [Google Scholar] [CrossRef] [Green Version]
- Kahiu, M.N.; Hanan, N.P. Fire in subSaharan Africa: The fuel, cure and connectivity hypothesis. Glob. Ecol. Biogeogr. 2017, 2018, 1–12. [Google Scholar] [CrossRef]
- Marques, S.; Garcia-Gonzalo, J.; Botequim, B.; Ricardo, A.; Borges, J.G.; Tomé, M.; Oliveira, M.M. Assessing wildfire occurrence probability in Pinus pinaster Ait. stands in Portugal. For. Syst. 2012, 21, 111–120. [Google Scholar] [CrossRef]
- Gonzalez, J.R.; Palaí, M.; Pukkala, T. A fire probability model for forest stands in Catalonia (northeast Spain). Ann. For. Sci. 2006, 63, 1–8. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Loureiro, C.; Magalhães, M.; Ferreira, P.; Fernandes, M. Fuel age, weather and burn probability in Portugal. Int. J. Wildl. Fire 2012, 21, 380–384. [Google Scholar] [CrossRef] [Green Version]
- Botequim, B.; Garcia-Gonzalo, J.; Marques, S.; Ricardo, A.; Borges, J.G.; Tomé, M.; Oliveira, M.M. Developing wildfire risk probability models for Eucalyptus globulus stands in Portugal. iForest 2013, 6, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Krawchuk, M.; Moritz, M. Constraints on global fire activity vary across a resource gradient. Ecology 2011, 92, 121–132. [Google Scholar] [CrossRef]
- Bradstock, R.A. A biogeographic model of fire regimes in Australia: Current and future implications. Glob. Ecol. Biogeogr. 2010, 19, 145–158. [Google Scholar] [CrossRef]
- Holz, A.; Kitzberger, T.; Paritsis, J.; Veblen, T.T. Ecological and climatic controls of modern wildfire activity patterns across southwestern South America. Ecosphere 2012, 3, 103. [Google Scholar] [CrossRef]
- Westerling, A.L.; Gershunov, A.; Brown, T.J.; Cayan, D.R.; Dettinger, M.D. Climate and wildfire in the western United States. Bull. Am. Meteorol. Soc. 2003, 84, 595–604. [Google Scholar] [CrossRef]
- Meyn, A.; White, P.S.; Buhk, C.; Jentsch, A. Environmental drivers of large, infrequent wildfires: The emerging conceptual model. Progr. Phys. Geogr. 2007, 31, 287–312. [Google Scholar] [CrossRef]
- Sherriff, R.L.; Veblen, T.T. Variability in fire-climate relationships in ponderosa pine forests in the Colorado Front Range. Int. J. Wildland Fire 2008, 17, 50–59. [Google Scholar] [CrossRef]
- Littell, J.S.; McKenzie, D.; Peterson, D.L.; Westerling, A.L. Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecol. Appl. 2009, 19, 1003–1021. [Google Scholar] [CrossRef]
- Pausas, J.G.; Ribeiro, E. Fire and productivity. Glob. Ecol. Biogeogr. 2013, 22, 728–736. [Google Scholar] [CrossRef]
- Kahiu, M.N.; Hanan, N.P. Estimation of woody and herbaceous leaf area index in sub-Saharan Africa using Modis data. J. Geophys. Res. Biogeosci. 2017, 123, 3–17. [Google Scholar] [CrossRef]
- Chuvieco, E.; Giglio, L.; Justice, C. Global characterization of fire activity: Toward defining fire regimes from Earth observation data. Glob. Chang. Biol. 2008, 14, 1488–1502. [Google Scholar] [CrossRef]
- INEGI (Instituto Nacional de Estadística y Geografía-México). Guía Para la Interpretación de Cartografía: Uso del suelo y Vegetación. escala 1, 250, 000: Serie V; Instituto Nacional de Estadística y Geografía: Ciudad de México, México, 2011. [Google Scholar]
- Rodríguez-Trejo, D.A. Fire regimes, fire ecology and fire management in México. AMBIO A J. Hum. Environ. 2008, 377, 548–556. [Google Scholar] [CrossRef]
- Rodríguez-Trejo, D.A. Incendios de Vegetación: Su Ecología, Manejo e Historia. México; Colegio de Post Graduados: Chapingo, Mexico, 2015; p. 814. (In Spanish) [Google Scholar]
- Jardel-Peláez, E.J.; Alvarado, E.; Quintero-Gradilla, S.D.; Rodríguez-Gómez, J.M.; Pérez-Salicrup, D.; Michel-Fuentes, J.M.; Morfín-Ríos, J.E.; Castillo-Navarro, M.F. Fuel beds and fire potential in Mexican terrestrial ecosystems. Fire Ecol. 2019. under review. [Google Scholar]
- Manzo-Delgado, L.; Sánchez-Colón, S.; Álvarez, R. Assessment of seasonal forest fire risk using NOAA-AVHRR: A case study in central Mexico. Int. J. Remote Sens. 2009, 30, 4991–5013. [Google Scholar] [CrossRef]
- Avila-Flores, D.; Pompa-Garcia, M.; Antonio-Nemiga, X.; Rodriguez-Trejo, D.; Vargas-Perez, E.; Santillan-Perez, J. Driving factors for forest fire occurrence in Durango State of Mexico: A geospatial perspective. Chin. Geo. Sci. 2010, 20, 491–497. [Google Scholar] [CrossRef]
- Avila-Flores, D.Y.; Pompa-Garcia, M.; Vargas, P.E. Spatial analysis of fire occurrence in the Durango state. Revista Chapingo Serie Ciencias Forestales 2010, 16, 253–260. [Google Scholar]
- Zuñiga-Vazquez, J.M.; Pompa-Garcia, M. The occurrence of forest fires in Mexico presents an altitudinal tendency: A geospatial analysis. Nat. Hazards 2018, 1–12, 2018. [Google Scholar] [CrossRef]
- Cartus, O.; Kellndorfer, J.; Walker, W.; Franco, C.; Bishop, J.; Santos, L.; Fuentes, J.M.M. A National, Detailed Map of Forest Aboveground Carbon Stocks in Mexico. Remote Sens. 2014, 6, 5559–5588. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Veiga, P.; Saatchi, S.; Tansey, K.; Balzter, H. Magnitude, spatial distribution and uncertainty of forest biomass stocks in Mexico. Remote Sens. Environ. 2016, 183, 265–281. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Serrano, P.M.; Lopez-Sanchez, C.A.; Diaz-Varela, R.A.; Corral-Rivas, J.J.; Solis-Moreno, R.; Vargas-Larreta, B.; Alvarez-Gonzalez, J.G. Estimating biomass of mixed and uneven-aged forests using spectral data and a hybrid model combining regression trees and linear models. iForest 2015, 9, 226–234. [Google Scholar] [CrossRef]
- López-Serrano, P.M.; López-Sánchez, C.A.; Solís-Moreno, R.; Corral-Rivas, J.J. Geospatial estimation of above ground forest biomass in the Sierra Madre Occidental in the state of Durango, Mexico. Forest 2016, 7, 70. [Google Scholar] [CrossRef]
- López-Serrano, P.M.; Corral-Rivas, J.J.; Díaz-Varela, R.A.; Álvarez-González, J.G.; López-Sánchez, C.A. Evaluation Of Radiometric And Atmospheric Correction Algorithms For Aboveground Forest Biomass Estimation Using Landsat-5 Tm. Data. Remote Sens. 2016, 8, 396. [Google Scholar] [CrossRef]
- López-Serrano, P.M.; López-Sánchez, C.A.; Álvarez-González, J.G.; García-Gutiérrez, J. A comparison of machine learning techniques applied to landsat-5 tm spectral data for biomass estimation. Can. J. Remote Sens. 2016, 42, 690–705. [Google Scholar] [CrossRef]
- Lee, B.S. The Canadian Wildland Fire Information System. In Proceedings of the 9th Annual Conference on Geographic Information Systems in Forestry, Vancouver, BC, Canada, 27 March 1995; GIS World Inc.: Fort Collins, CO, USA; pp. 639–646. [Google Scholar]
- Burgan, R.E.; Andrews, P.L.; Bradshaw, L.S.; Chase, C.H.; Hartford, R.A.; Latham, D.J. WFAS: Wildland fire assessment system. Fire Manag. Notes 1997, 57, 4–17. [Google Scholar]
- Jolly, W.M.; Andrews, P.L.; Bradshaw, L.S. The Wildland Fire Assessment System (WFAS): A webbased resource for decision support. In Proceedings of the EastFire Conference, Virginia, Fairfax, VA, USA, 11–13 May 2005; George Mason University: Fairfax, VI, USA. [Google Scholar]
- Preisler, H.K.; Burgan, R.E.; Eidenshink, J.C.; Klaver, J.M.; Klaver, R.W. Forecasting Distributions of Large Federal-Lands Fires Utilizing Satellite and Gridded Weather Information. Int. J. Wildl. Fire 2009, 18, 508–516. [Google Scholar] [CrossRef]
- Jolly, W.M.; Freeborn, P.H. Towards Improving Wildland Firefighter Situational Awareness Through Daily Fire Behaviour Risk Assessments In The US Northern Rockies And Northern Great Basin. Int. J. Wildl. Fire 2017, 26, 574–586. [Google Scholar] [CrossRef]
- Vega-Nieva, D.; Nava-Miranda, M.G.; Calleros-Flores, E.; Lopez-Serrano, P.M.; Briseño-Reyes, J.; Lopez-Sanchez, C.A.; Flores-Medina, F.; Corral-Rivas, J.J.; Gonzalez-Caban, A.; Alvarado-Celestino, E. Developing a Forest Fire Danger System for Mexico. In Proceedings of the Fifth International Symposium on Fire Economics, Planning, and Policy: Ecosystem Services and Wildfires, Tegucigalpa, Honduras, 14–18 November 2016; González-Cabán, A., Sánchez, J.J., USDA Forest Service, Pacific Southwest Research Station, Eds.; General Technical Report PSW-GTR-261. 2019. Available online: https://www.fs.usda.gov/treesearch/pubs/57665 (accessed on 6 May 2019).
- Vega-Nieva, D.J.; Monjarás-Vega, N.; Briones-Herrera, C.I.; Briseño-Reyes, J.; Nava-Miranda, M.G.; Calleros-Flores, E.; Flores-Medina, F.; López-Serrano, P.M.; Corral-Rivas, J.J.; Cruz-López, M.I.; et al. El Sistema de Predicción de Peligro de incendios forestales para México. [The Fire Danger Prediction System of Mexico]. Expo Forestal 2018. Guadalajara. 11 October 2018. Available online: http://forestales.ujed.mx/incendios/incendios/pdf/Vega18_SistemaPeligro_ExpoGuadalajara_11Oct2018.pdf (accessed on 6 May 2019).
- Vega-Nieva, D.J.; Briseño-Reyes, J.; Nava-Miranda, M.G.; Calleros-Flores, E.; López-Serrano, P.M.; Corral-Rivas, J.J.; Montiel-Antuna, E.; Cruz-López, M.I.; Cuahutle, M.; Ressl, R.; et al. Developing Models to Predict the Number of Fire Hotspots from an Accumulated Fuel Dryness Index by Vegetation Type and Region in Mexico. Forests 2018, 9, 190. [Google Scholar] [CrossRef]
- Vega-Nieva, D.J.; Nava-Miranda, M.G.; Calleros-Flores, E.; López-Serrano, P.M.; Briseño-Reyes, J.; Corral-Rivas, J.J.; Cruz-López, M.I.; Cuahutle, M.; Ressl, R.; Alvarado-Celestino, E.; et al. Temporal patterns of fire density by vegetation type and region in Mexico and its temporal relationships with a monthly satellite fuel greenness index. Fire Ecol. 2019. under review. [Google Scholar]
- Vega-Nieva, D.J.; Nava-Miranda, M.G.; López-Serrano, P.M.; Briseño-Reyes, J.; Corral-Rivas, J.J.; Cruz-López, M.I.; Cuahutle, M.; Ressl, R.; Alvarado-Celestino, E.; González-Cabán, A. Modeling the internannual and monthly variations in the spatial distribution of active fires from a fuel dryness index by vegetation type and region in Mexico. PLoS ONE 2019. under review. [Google Scholar]
- Pompa-García, M.; Camarero, J.J.; Rodrı́guez-Trejo, D.A.; Vega-Nieva, D.J. Drought and spatio temporal variability of forest fires across Mexico. Chin. Geo. Sci. 2017, 28, 25–37. [Google Scholar] [CrossRef]
- ERDAS Inc. ERDAS IMAGINE 2014. Available online: Http://www.hexagongeospatial.com/products/ERDAS-IMAGINE/details.aspx (accessed on 27 March 2019).
- ESRI. ArcGIS Desktop 10.1; Environmental Systems Research Institute: Redlands, CA, USA, 2011. [Google Scholar]
- Weibul, L.W. Statistical distribution function of wide applicability. J. App. Mechs. 1951, 18, 292–297. [Google Scholar]
- Grissino-Mayer, H.D. Modeling Fire Interval Data from the American Southwest with the Weibull Distribution. Int. J. Wildland Fire 1999, 9, 37–50. [Google Scholar] [CrossRef]
- Polakow, D.; Dunne, T. Modelling fire return interval T: Stochasticity and censoring in the two- parameter Weibull model. Ecol. Modell. 1999, 121, 79–102. [Google Scholar] [CrossRef]
- Rennolls, K.; Geary, D.N.; Rollison, T.J.D. Characterizing diameter distributions by the use of the Weibull distribution. Forestry 1985, 58, 57–66. [Google Scholar] [CrossRef]
- Maltamo, M.; Puumalainen, J.; Päivinen, R. Comparison of beta and Weibull functions for modelling basal area diameter distribution in stands of Pinus sylvestris and Picea abies. Scand. J. For. Res. 1995, 10, 284–295. [Google Scholar] [CrossRef]
- Nanang, D.M. Suitability of the Normal, Log-Normal and Weibull distributions for fitting diameter distributions of neem plantations in Northern Ghana. For. Ecol. Manag. 1998, 103, 1–7. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: https://www.R-project.org/ (accessed on 20 March 2017).
- Bates, D.M.; Watts, D.G. Nonlinear Regression Analysis and its Applications; John Wiley & Sons: New York, NY, USA, 1988. [Google Scholar]
- Zhang, L.; Peng, L.; Huang, S.; Zhou, X. Development and evaluation of ecoregion-based tree height-diameter models for jack pine in Ontario. For. Chron. 2002, 78, 530–538. [Google Scholar] [CrossRef]
- Castedo, F.; Barrio, M.; Parresol, B.R.; Álvarez González, J.G. A stochastic height-diameter model for maritime pine ecoregions in Galicia (northwestern Spain). Ann. For. Sci. 2005, 62, 455–465. [Google Scholar] [CrossRef] [Green Version]
- Corral-Rivas, J.J.; Barrio-Anta, M.; Treviño-Garza, E.; Diéguez-Aranda, U. Use of stump diameter to estimate diameter at breast height and tree volume, for major pine species in El Salto, Durango (Mexico). Forestry 2007, 80, 29–40. [Google Scholar] [CrossRef]
- Lilliefors, H.W. On the Kolmogorov-Smirnov test for the exponential distribution with mean unknown. J. Am. Stat. Assoc. 1969, 64, 387–389. [Google Scholar] [CrossRef]
- Reynolds, M.R.; Burk, T.E.; Huang, W. Goodness-of-fit tests and model selection procedures for diameter distributions models. For. Sci. 1988, 34, 377–399. [Google Scholar]
- González-Ferreiro, E.; Arellano-Pérez, S.; Castedo-Dorado, F.; Hevia, A.; Vega, J.A.; Vega-Nieva, D.; Álvarez-González, J.G.; Ruiz-González, A.D. Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data. PLoS ONE 2017, 12, e0176114. [Google Scholar] [CrossRef]
- Ryan, T.P. Modern Regression Methods. In Wiley Series in Probability and Statistics; John Wile and Sons: New York, NY, USA, 1997; 515p. [Google Scholar]
- Hui, G.Y.; Gadow, K. v. Zur Entwicklung von Einheitshöhenkurven am Beispiel der Baumart Cunninghamia lanceolata. Allg.Forst- u. Jagdztg 1993, 164, 218–220. [Google Scholar]
- Minnich, R.A.; Chou, Y.H. Wildland fire patch dynamics in the chaparral of southern California and Northern Baja California. Int. J. Wildl. Fire 1997, 7, 221–248. [Google Scholar] [CrossRef]
- Regelbrugge, J.C.; Conard, S.G. Biomass and Fuel Characteristics of Chaparral in Southern California. In Proceedings of the 13th Conference on Fire and Forest Meteorology, Lorne, Australia, 27–31 October 1996. [Google Scholar]
- Schmidt, I.T.; O’Leary, J.F.; DouStow, D.A.; Uyeda, K.A.; Riggan, P.J. Use of ultra-high spatial resolution aerial imagery in the estimation of chaparral wildfire fuel loads. Environ. Monit. Assess. 2016, 188, 697. [Google Scholar] [CrossRef]
- Anderson, W.R.; Cruz, M.G.; Fernandes, P.M.; McCaw, W.L.; Vega, J.A.; Bradstock, R.A.; Fogarty, L.; Gould, J.; McCarthy, G.; Marsden-Smedley, J.B.; et al. A generic, empirical-based model for predicting rate of fire spread in shrublands. Int. J. Wildl. Fire 2015, 24, 443–460. [Google Scholar] [CrossRef]
- Baeza, M.J.; Raventós, J.; Escarré, A.; Vallejo, V.R. Fire risk and vegetation structural dynamics in Mediterranean shrubland. Plant Ecol. 2006, 187, 189–201. [Google Scholar] [CrossRef]
- Baeza, J.; Santana, V.M.; Pausas, J.G.; Vallejo, R. Successional trends in standing dead biomass in Mediterranean Basin species. Sci. J. Veg. Sci. 2011, 22, 467–474. [Google Scholar] [CrossRef]
- Pausas, J.G.; Bradstock, R.A. Fire persistence traits of plants along a productivity and disturbance gradient in mediterranean shrublands of southeast Australia. Glob. Ecol. Biogeogr. 2007, 16, 330–340. [Google Scholar] [CrossRef]
- Oliveira, S.; Moreira, F.; Boca, R.; San-Miguel-Ayanz, J.; Pereira, J.M.C. Assessment of fire selectivity in relation to land cover and topography: A comparison between Southern European countries. Int. J. Wildl. Fire 2013, 23, 620–630. [Google Scholar] [CrossRef]
- Monjarás-Vega, N.A.; Vega-Nieva, D.J.; Briones-Herrera, C.I.; Flores-Medina, F.; Calleros-Flores, E.; Corral-Rivas, J.J.; López-Serrano, P.M.; Pompa-García, M.; Alvarado, E.; González-Cabán, A.; et al. Modeling and mapping fire risk from human factors in Mexico. In Proceedings of the 6th International Fire Behavior and Fuels Conference, Albuquerque, NM, USA, 29 April–3 May 2019. [Google Scholar]
- Syphard, A.D.; Brennan, T.J.; Keeley, J.E. Chaparral landscape conversion in southern California. In Valuing Chaparral; Underwood, E.C., Safford, H.D., Molinari, N.A., Keeley, J.E., Eds.; Springer International Publishing: Basel, Switzerland, 2018; pp. 311–334. [Google Scholar]
- Archibald, S.; Staver, A.C.; Levin, S.A. Evolution of human driven fire regimes in Africa. Proc. Natl. Acad. Sci. USA 2012, 109, 847–852. [Google Scholar] [CrossRef]
- Cortés-Montaño, C.; Fulé, P.Z.; Falk, D.A.; Villanueva-Díaz, J.; Yocom, L.L. Linking old-growth forest composition, structure, fire history, climate and land-use in the mountains of northern México. Ecosphere 2012, 3, 106. [Google Scholar] [CrossRef]
- Fulé, P.Z.; Waltz, A.E.M.; Covington, W.W.; Heinlein, T.A. Measuring forest restoration effectiveness in reducing hazardous fuels. J. For. 2001, 99, 24–29. [Google Scholar]
- Kaufmann, M.R.; Binkley, D.; Fulé, P.Z.; Johnson, M.; Stephens, S.L.; Swetnam, T.W. Defining old growth for fire-adapted forests of the western United States. Ecol. Soc. 2007, 12, 15. [Google Scholar] [CrossRef]
- Cochrane, M.A. Fire science for rainforests. Nature 2003, 421, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Román-Cuesta, R.M.; Retana, J.; Gracia, M. Fire trends in tropical Mexico: A case study of Chiapas. J. For. 2004, 102, 26–48. [Google Scholar]
- Rodríguez-Trejo, D.A.; Tchikoué, H.; Cíntora, C.; Contreras, R.; de la Rosa, A. Combustibles forestales, peligro de incendio y áreas prioritarias de protección en las zonas afectadas por el huracán Dean. Agrociencia 2011, 45, 593–608. [Google Scholar]
- Ressl, R.; Lopez, G.; Cruz, I.; Colditz, R.R.; Schmidt, M.; Ressl, S.; Jiménez, R. Operational active fire mapping and burnt area identification applicable to Mexican Nature Protection Areas using MODIS and NOAA-AVHRR direct readout data. Remote Sens. Environ. 2009, 113, 1113–1126. [Google Scholar] [CrossRef]
- Dohn, J.; Dembele, F.; Karembe, M.; Moustakas, A.; Amevor, K.A.; Hanan, N.P. Tree effects on grass growth in savannas: Competition, facilitation and the stress-gradient hypothesis. J. Ecol. 2013, 101, 202–209. [Google Scholar] [CrossRef]
- Verschuyl, J.; Clark, L.; Loehle, C. Predicting Shrub Biomass and Current Annual Growth from Field Measurements in the Oregon Coast Range. Northw. Sci. 2018, 92, 9–17. [Google Scholar] [CrossRef]
- Flores-Medina, F.; Vega-Nieva, D.J.; Monjarás-Vega, N.; Briones-Herrera, C.I.; Corral-Rivas, J.J.; Calleros, E.; López-Serrano, P.M.; Alvarado, E.; González-Cabán, A.; Pérez-Salicrup, D.; et al. Mapping fuel loads and fire behavior from Sentinel in Durango, NW Mexico. In Proceedings of the 6th International Fire Behavior and Fuels Conference, Albuquerque, NM, USA, 29 April–3 May 2019. [Google Scholar]
Ecoregions | Coefficients | Goodness of Fit | |||
---|---|---|---|---|---|
b | c | R2 | RMSE | Bias | |
CHAP | 21.45 (±0.83) | 1.97 (±0.12) | 0.715 | 0.008 | 0.0011 |
N | 17.85 (±0.88) | 3.81 (±0.55) | 0.487 | 0.029 | 0.0045 |
NW_NE | 27.22 (±0.16) | 3.63 (±0.06) | 0.980 | 0.002 | 0.1 × 10−5 |
C | 33.12 (±0.30) | 3.02 (±0.07) | 0.953 | 0.003 | 0.1 × 10−4 |
SC | 25.85 (±0.80) | 2.53 (±0.16) | 0.720 | 0.008 | 0.0002 |
SE | 31.34 (±0.57) | 2.69 (±0.11) | 0.839 | 0.005 | 0.0011 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Briones-Herrera, C.I.; Vega-Nieva, D.J.; Monjarás-Vega, N.A.; Flores-Medina, F.; Lopez-Serrano, P.M.; Corral-Rivas, J.J.; Carrillo-Parra, A.; Pulgarin-Gámiz, M.Á.; Alvarado-Celestino, E.; González-Cabán, A.; et al. Modeling and Mapping Forest Fire Occurrence from Aboveground Carbon Density in Mexico. Forests 2019, 10, 402. https://doi.org/10.3390/f10050402
Briones-Herrera CI, Vega-Nieva DJ, Monjarás-Vega NA, Flores-Medina F, Lopez-Serrano PM, Corral-Rivas JJ, Carrillo-Parra A, Pulgarin-Gámiz MÁ, Alvarado-Celestino E, González-Cabán A, et al. Modeling and Mapping Forest Fire Occurrence from Aboveground Carbon Density in Mexico. Forests. 2019; 10(5):402. https://doi.org/10.3390/f10050402
Chicago/Turabian StyleBriones-Herrera, Carlos Ivan, Daniel José Vega-Nieva, Norma Angélica Monjarás-Vega, Favian Flores-Medina, Pablito Marcelo Lopez-Serrano, José Javier Corral-Rivas, Artemio Carrillo-Parra, Miguel Ángel Pulgarin-Gámiz, Ernesto Alvarado-Celestino, Armando González-Cabán, and et al. 2019. "Modeling and Mapping Forest Fire Occurrence from Aboveground Carbon Density in Mexico" Forests 10, no. 5: 402. https://doi.org/10.3390/f10050402
APA StyleBriones-Herrera, C. I., Vega-Nieva, D. J., Monjarás-Vega, N. A., Flores-Medina, F., Lopez-Serrano, P. M., Corral-Rivas, J. J., Carrillo-Parra, A., Pulgarin-Gámiz, M. Á., Alvarado-Celestino, E., González-Cabán, A., Arellano-Pérez, S., Álvarez-González, J. G., Ruiz-González, A. D., & Jolly, W. M. (2019). Modeling and Mapping Forest Fire Occurrence from Aboveground Carbon Density in Mexico. Forests, 10(5), 402. https://doi.org/10.3390/f10050402