Lessons Learned from Arson Wildfire Incidence in Reforestations and Natural Stands in Spain
Abstract
1. Introduction
2. Materials and Methods
2.1. Reforestation Historical Data
2.2. Fire Historical Data
2.3. Database for Model Building
2.4. The Modeling Approach: Artificial Neural Network (ANN) Models
3. Results
3.1. Models RF_FT and NRF_FT: Fire Type in Reforested and Natural Stands (All Species)
3.2. Models RFPINE_FT and NRFPINE_FT: Fire Type in Continental Mediterranean Mountain Pines in Reforested and in Natural Stands (P. halepensis, P. nigra, P. sylvestris)
3.3. Models RFPP_FT and NRFPP_FT: Fire Type in P. pinaster in Reforested and in Natural Stands
3.4. Models RFE_FT: Eucalyptus Artificial Stands
4. Discussion
4.1. Wildfire Incidence: Occurrence in Reforested and Nonreforested Stands
4.2. Wildfire Incidence: Neural Network Models for Fire Behaviour
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ministerio de Agricultura y Pesca Alimentación y Medio Ambiente (MAPAMA) Estadística General de Incendios Forestales. Memoria 2017, 32. Available online: https://www.mapa.gob.es/es/desarrollo-rural/estadisticas/Incendios_default.aspx (accessed on 5 February 2018).
- Camia, A.; Durrant, T.; San-Miguel Ayanz, J. Harmonized classification scheme of fire causes in the EU adopted for the European Fire Database of EFFIS; Scientific and Technical Research Report for UN: Luxemburg, 2013; pp. 1–51. [Google Scholar] [CrossRef]
- Prestemon, J.P.; Butry, D.T. Wildland arson management. In The Economics of Forest Disturbances; Holmes, T., Prestemon, J.P., Abt, K., Eds.; Springer Science & Business Media: Dordrecht, The Netherlands, 2008; pp. 123–147. [Google Scholar]
- Simon, L.; Clément, V.; Pech, P. Forestry disputes in provincial France during the nineteenth century: The case of the Montagne de Lure. J. Hist. Geogr. 2007, 33, 335–351. [Google Scholar] [CrossRef]
- Álvarez, P.; De la Fuente, E.I.; García, J.; De la Fuente, L. Psychosocial variables in the determination of the verdict object in trials for environmental crimes in Spain. Environ. Behav. 2009, 41, 509–525. [Google Scholar] [CrossRef]
- Fuentes-Santos, I.; Marey-Pérez, M.F.; González-Manteiga, W. Forest fire spatial pattern analysis in Galicia (NW Spain). J. Environ. Manag. 2013, 128, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Molina, D.M. Origins of Arson in Northwestern Spain. Fire Manag. Notes 1997, 57, 18–23. [Google Scholar] [CrossRef]
- Cabana Iglesia, A. Los incendios en el monte comunal gallego. Lugo durante el primer franquismo. Hist. Agrar. 2007, 17, 555–577. [Google Scholar]
- Ganteaume, A.; Camia, A.; Jappiot, M.; San-Miguel-Ayanz, J.; Long-Fournel, M.; Lampin, C. A review of the main driving factors of forest fire ignition over Europe. Environ. Manag. 2013, 51, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Vega-Garcia, C.; Woodard, P.M.; Titus, S.J.; Adamowicz, W.L.; Lee, B.S. A Logit Model for Predicting the Daily Occurrence of Human Caused Forest-Fires. Int. J. Wildl. Fire 1995, 5, 101–111. [Google Scholar] [CrossRef]
- Nunes, M.C.S.; Vasconcelos, M.J.; Pereira, J.M.C.; Dasgupta, N.; Alldredge, R.J.; Rego, F.C. Land Cover Type and Fire in Portugal: Do Fires Burn Land Cover Selectively? Landsc. Ecol. 2005, 20, 661–673. [Google Scholar] [CrossRef]
- González, J.R.; Palahí, M.; Trasobares, A.; Pukkala, T. A fire probability model for forest stands in Catalonia (North-East Spain). Ann. For. Sci. 2006, 63, 169–176. [Google Scholar] [CrossRef]
- Kalabokidis, K.D.; Koutsias, N.; Konstantinidis, P.; Vasilakos, C. Multivariate analysis of landscape wildfire dynamics in a Mediterranean ecosystem of Greece. Area 2007, 39, 392–402. [Google Scholar] [CrossRef]
- Garcia-Gonzalo, J.; Zubizarreta-Gerendiain, A.; Ricardo, A.; Marques, S.; Botequim, B.; Borges, J.G.; Oliveira, M.M.; Tomé, M.; Pereira, J.M.C. Modelling wildfire risk in pure and mixed forest stands in Portugal. Allg. Forst und Jagdzeitung 2012, 183, 238–248. [Google Scholar]
- Barreal, J.; Loureiro, M.L. Modelling spatial patterns and temporal trends of wildfires in Galicia (NW Spain). For. Syst. 2015, 24, e022. [Google Scholar] [CrossRef]
- Padilla, M.; Vega-García, C. On the comparative importance of fire danger rating indices and their integration with spatial and temporal variables for predicting daily human-caused fire occurrences in Spain. Int. J. Wildl. Fire 2011, 20, 46–58. [Google Scholar] [CrossRef]
- Álvarez, R.; Muñoz, A.; Pesqueira, X.M.; García-Duro, J.; Reyes, O.; Casal, M. Spatial and temporal patterns in structure and diversity of Mediterranean forest of Quercus pyrenaica in relation to fire. For. Ecol. Manag. 2009, 257, 1596–1602. [Google Scholar] [CrossRef]
- Ruiz-Benito, P.; Gómez-Aparicio, L.; Zavala, M.A. Large-scale assessment of regeneration and diversity in Mediterranean planted pine forests along ecological gradients. Divers. Distrib. 2012, 18, 1092–1106. [Google Scholar] [CrossRef]
- Barbero Bonin, G.; Loisel, R.; Quézel, P.M. Changes and disturbances of forest ecosystems caused by human activities in the western part of the Mediterranean basin. Vegetatio 1990, 87, 151–193. [Google Scholar] [CrossRef]
- Schelhaas, M.J.; Hengeveld, G.; Moriondo, M.; Reinds, G.J.; Kundzewicz, Z.W.; ter Maat, H.; Bindi, M. Assessing risk and adaptation options to fires and windstorms in European forestry. Mitig. Adapt. Strateg. Glob. Chang. 2010, 15, 681–701. [Google Scholar] [CrossRef]
- Sheffer, E. A review of the development of Mediterranean pine-oak ecosystems after land abandonment and afforestation: Are they novel ecosystems? Ann. For. Sci. 2012, 69, 429–443. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Food and Agriculture Organization Global Forest Resources Assessment 2005: Progress towards Sustainable Forest Management; Food and Agriculture Organization: Rome, Italy, 2006; ISBN 9251054819. [Google Scholar]
- Nolet, P.; Béland, M. Long-term susceptibility of even-and uneven-aged northern hardwood stands to partial windthrow. Forests 2017, 8. [Google Scholar] [CrossRef]
- Schall, P.; Gossner, M.M.; Heinrichs, S.; Fischer, M.; Boch, S.; Prati, D.; Jung, K.; Baumgartner, V.; Blaser, S.; Böhm, S.; et al. The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests. J. Appl. Ecol. 2018, 55, 267–278. [Google Scholar] [CrossRef]
- Elia, M.; Lafortezza, R.; Lovreglio, R.; Sanesi, G. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland–Urban Interfaces in Southern Italy. Environ. Manag. 2015, 56, 754–764. [Google Scholar] [CrossRef] [PubMed]
- Zavala, M.A.; Zea, E. Mechanisms maintaining biodiversity in Mediterranean pine-oak forests: Insights from a spatial simulation model. Plant Ecol. 2004, 171, 197–207. [Google Scholar] [CrossRef]
- Gömöry, D.; Paule, L. Management implications of intrapopulation and nterpopulation genetic variation in Norway spruce. In Close to Nature Forestry; Novotny, J., Ed.; Forest Research Institute: Zvolen, Slovakia, 2004; pp. 129–137. [Google Scholar]
- Pausas, J.G.; Llovet, J.; Rodrigo, A.; Vallejo, R. Are wildfires a disaster in the Mediterranean basin?—A review. Int. J. Wildl. Fire 2008, 17, 713. [Google Scholar] [CrossRef]
- Vega-García, C.; Chuvieco, E. Applying local measures of spatial heterogeneity to Landsat-TM images for predicting wildfire occurrence in Mediterranean landscapes. Landsc. Ecol. 2006, 21, 595–605. [Google Scholar] [CrossRef]
- Martínez, J.; Vega-Garcia, C.; Chuvieco, E. Human-caused wildfire risk rating for prevention planning in Spain. J. Environ. Manag. 2009, 90, 1241–1252. [Google Scholar] [CrossRef] [PubMed]
- Badia, A. Causality and management of forest fires in Mediterranean environments: an example from Catalonia. Glob. Environ. Chang. Part B Environ. Hazards 2002, 4, 23–32. [Google Scholar] [CrossRef]
- González, J.R.; Pukkala, T. Characterization of forest fires in Catalonia (north-east Spain). Eur. J. For. Res. 2007, 126, 421–429. [Google Scholar] [CrossRef]
- Moreno, J.M.; Vazquez, A.; Velez, R. Recent history of forest fires in Spain. In Large forest fires; Moreno, J., Ed.; Backhuys Publishers: Leiden, The Netherlands, 1998; pp. 159–185. [Google Scholar]
- Pausas, J.G.; Fernandez-Muñoz, S. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Clim. Change 2012, 110, 215–226. [Google Scholar] [CrossRef]
- Jiménez-Ruano, A.; Rodrigues Mimbrero, M.; de la Riva, J. Exploring spatial—Temporal dynamics of fire regime features in mainland Spain. Nat. Hazards Earth Syst. Sci. 2017, 17, 1697–1711. [Google Scholar] [CrossRef]
- Claessens, S.; Dell’Ariccia, G.; Igan, D.; Laeven, L. Cross-country experiences and policy implications from the global financial crisis. Glob. linkages Glob. policies 2010, 25, 267–293. [Google Scholar] [CrossRef]
- Collantes, F.; Pinilla, V.; Sáez, L.A.; Silvestre, J. Reducing depopulation in rural Spain: The impact of immigration. Popul. Space Place 2014, 20, 606–621. [Google Scholar] [CrossRef]
- WWF/Adena ¿Recuperando bosques o plantando incendios? Un análisis de WWF sobre el futuro de los grandes incendios forestales en España. 2010. Available online: http://assets.wwf.es/downloads/incendios_forestales_2010_lr.pdf (accessed on 15 June 2018).
- Ruiz de la Torre, J. Memoria general del Mapa Forestal de España, 1:200000. Ministerio de Agricultura, Pesca y Alimentación. ICONA, 1990; 191. [Google Scholar]
- Costafreda-Aumedes, S.; Garcia-Martin, A.; Vega-Garcia, C. The relationship between landscape patterns and human-caused fire occurrence in Spain. For. Syst. 2013, 22, 71–81. [Google Scholar] [CrossRef]
- Instituto Nacional para la Conservación de la Naturaleza (Espanya). Memoria sobre las actividades de este Instituto, ICONA (1973-1982); Ministerio de Agricultura: Madrid, Spain, 1983.
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels. USDA For. Serv. Res. Pap. INT USA 1972, 40. Available online: https://www.fs.fed.us/rm/pubs_int/int_rp115.pdf (accessed on 20 June 2018).
- Costafreda-Aumedes, S.; Vega-Garcia, C. ANN multivariate analysis of factors that influence human-caused multiple fire starts. In Advances in Forest Fire Research; Imprensa da Universidade de Coimbra, 2014; Volume 4, pp. 1787–1798. [Google Scholar] [CrossRef]
- Vasconcelos, M.J.P.; Silva, S.; Tomé, M.; Alvim, M.; Cardoso Pereira, J.M. Spatial Prediction of Fire Ignition Probabilities: Comparing Logistic Regression and Neural Networks. Photogramm. Eng. Remote Sens. 2001, 67, 73–81. [Google Scholar]
- Scrinzi, G.; Marzullo, L.; Galvagni, D. Development of a neural network model to update forest distribution data for managed alpine stands. Ecol. Modell. 2007, 206, 331–346. [Google Scholar] [CrossRef]
- Fahlman, S.E.; Lebiere, C. The Cascade-Correlation Learning Architecture. In Advances in Neural Information Processing Systems 2; Morgan Kaufmann Publisher: San Francisco, CA, USA, 1990; pp. 524–532. [Google Scholar]
- NeuralWare NeuralWorks Predict, The Complete Solution for Neural Data Modelling; User’s Guide, Version 3.24; NeuralWare: Carnergie, PA, USA, 2009.
- Alcázar, J.; Palau, A.; Vega-Garcia, C. A neural net model for environmental flow estimation at the Ebro River Basin, Spain. J. Hydrol. 2008, 349, 44–55. [Google Scholar] [CrossRef]
- Debouk, H.; Riera-Tatché, R.; Vega-García, C. Assessing Post-Fire Regeneration in a Mediterranean Mixed Forest Using Lidar Data and Artificial Neural Networks. Photogramm. Eng. Remote Sens. 2013, 79, 1121–1130. [Google Scholar] [CrossRef]
- Werbos, P.J. The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting; Wiley-Interscience: New York, NY, USA, 1994; ISBN 0-471-59897-6. [Google Scholar]
- Jutras, P.; Prasher, S.O.; Mehuys, G.R. Prediction of street tree morphological parameters using artificial neural networks. Comput. Electron. Agric. 2009, 67, 9–17. [Google Scholar] [CrossRef]
- Castroviejo, S.; García-Dorny, M.A.; Martínez, S.; Prieto, F. Política forestal en España (1940–1985). Quercus 1985, 19, 5–51. [Google Scholar]
- Ministerio de Agricultura y Pesca Alimentación. Segundo Inventario Forestal Nacional 198-1995. Explicaciones y métodos; ICONA, Ed.; EGRAF S.A.: Madrid, Spain, 2007; ISBN 84-85496-60-4. [Google Scholar]
- Cardil, A.; Molina, D. Large wildland fires in three diverse regions in Spain from 1978 to 2010. For. Syst. 2013, 22, 526–534. [Google Scholar] [CrossRef]
- Dimitrakopoulos, A.P. Mediterranean fuel models and potential fire behaviour in Greece. Int. J. Wildl. Fire 2002, 11, 127–130. [Google Scholar] [CrossRef]
- Fernandez, C.; Vega, J.A.; Gras, J.M.; Fonturbel, T. Changes in water yield after a sequence of perturbations and forest management practices in an Eucalyptus globulus Labill. watershed in Northern Spain. For. Ecol. Manag. 2006, 234, 275–281. [Google Scholar] [CrossRef]
- Prasad, V.K.; Badarinath, K.V.S.; Eaturu, A. Biophysical and anthropogenic controls of forest fires in the Deccan Plateau, India. J. Environ. Manag. 2008, 86, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J.M.; Viedma, O.; Zavala, G.; Luna, B. Landscape variables influencing forest fires in central Spain. Int. J. Wildl. Fire 2011, 20, 678–689. [Google Scholar] [CrossRef]
- Finney, M.A. Mechanistic modeling of landscape fire patterns. In Spatial Modeling of Forest Landscapes: Approaches and Applications. Cambridge University Press, Cambridge; Mladenoff, D.J., Baker, W., Eds.; University Press: Cambrige, MA, USA, 1999; pp. 186–209. [Google Scholar]
- Pollet, J.; Omi, P.N. Effect of thinning and prescribed burning on crown fire severity in ponderosa pine forests. Int. J. Wildl. Fire 2002, 11, 1–10. [Google Scholar] [CrossRef]
- Tragsatec. Plan de selvicultura preventiva de incendios en los sistemas forestales de la Comunidad Valenciana. Memoria 1996. 420 pags. Available online: http://www.agroambient.gva.es/auto/prevencion-incendios/Por-demarcacion/Chelva/06.%20Plan%20de%20infraestructuras/Anexos/Plan_selvicultura_preventiva.pdf (accessed on 10 September 2018).
- Pasalodos-Tato, M.; Pukkala, T.; Rojo Alboreca, A. Optimal management of Pinus pinaster in Galicia (Spain) under risk of fire. Int. J. Wildl. Fire 2010, 19, 937–948. [Google Scholar] [CrossRef]
- Casals, P.; Valor, T.; Besalú, A.; Molina-Terrén, D. Understory fuel load and structure eight to nine years after prescribed burning in Mediterranean pine forests. For. Ecol. Manag. 2016, 362, 156–168. [Google Scholar] [CrossRef]
- Fernandes, P.M. Scientific support to prescribed underburning in southern Europe: What do we know? Sci. Total Environ. 2018, 630, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Piqué, M.; Domènech, R. Effectiveness of mechanical thinning and prescribed burning on fire behavior in Pinus nigra forests in NE Spain. Sci. Total Environ. 2018, 618, 1539–1546. [Google Scholar] [CrossRef] [PubMed]
- Palmero-Iniesta, M.; Domènech, R.; Molina-Terrén, D.; Espelta, J.M. Fire behavior in Pinus halepensis thickets: Effects of thinning and woody debris decomposition in two rainfall scenarios. For. Ecol. Manag. 2017, 404, 230–240. [Google Scholar] [CrossRef]
- Molina, J.R.; García, J.P.; Fernández, J.J.; Rodríguez y Silva, F. Prescribed fire experiences on crop residue removal for biomass exploitations. Application to the maritime pine forests in the Mediterranean Basin. Sci. Total Environ. 2018, 612, 63–70. [Google Scholar] [CrossRef] [PubMed]
Acronym | Description | Acronym | Description |
---|---|---|---|
AGE | Mean Age | FTP5 | Grasses and bushes |
CC | Canopy cover | FTP6 | Grasses and forest |
SD | Seedling stage | FTP7 | Grasses and slash |
SS | Sapling stage | FTP8 | Bushes and forest |
TH | Thicket stage | FTP9 | Bushes and slash |
PS | Pole stage | FTP10 | Forest and slash |
HFS | High-forest | FTP11 | Grasses, bushes, and forest |
FTP1 | Grasses | FTP12 | Grasses, bushes and slash |
FTP2 | Bushes | FTP13 | Grasses, forest and slash |
FTP3 | Forest | FTP14 | Bushes, forests and slash |
FTP4 | Wood slash | FTP15 | Grasses, bushes, forest, and slash |
Dependent Variables | Surface Features | Number of Observations |
---|---|---|
Fire type | Reforested stands (All species) (RF_FT) | 1524 |
Not reforested stands (All species) (NRF_FT) | 1136 | |
Reforested Pine sp. (RFPINE_FT) | 122 | |
Natural Pine stands (NRFPINE_FT) | 488 | |
Reforested P. pinaster (RFPP_FT) | 1054 | |
Natural stands of P. pinaster Ait. (NRFPP_FT) | 167 | |
Eucalyptus sp. (RFE_FT) | 330 | |
Burned area | Reforestations (RF_BA) | 1291 |
Not Reforested stands (NRF_BA) | 923 | |
Reforested Pine sp. (RFPINE_BA) | 59 | |
Natural Pine stands (NRFPINE_BA) | 306 | |
Reforested P. Pinaster (RFPP_BA) | 886 | |
Natural stands of P. Pinaster (NRFPP_BA) | 125 | |
Eucalyptus sp. (RFE_BA) | 298 | |
Total tree burned area | Reforestations (RF_TBA) | 924 |
Not reforested stands (NRF_TBA) | 597 | |
Reforested Pine sp. (RFPINE_TBA) | 40 | |
Natural Pine stands (NRFPINE_TBA) | 146 | |
Reforested P. pinaster (RFPP_TBA) | 657 | |
Natural stands of P. pinaster (NRFPP_TBA) | 98 | |
Eucalyptus sp. (RFE_TBA) | 192 |
Species | Total RF Surface (ha) | N° Ignition Points in RF (N° Ig/100 ha) | Total NRF (ha) | N° Ignition Points in NRF (N° Ig/100 ha) |
---|---|---|---|---|
P. pinaster | 782,414 | 14,908 (1.90) | 517,586 | 1888 (0.365) |
P. sylvestris | 552,973 | 663 (0.11) | 227,027 | 690 (0.304) |
P. halepensis | 466,282 | 535 (0.11) | 673,718 | 4850 (0.720) |
Eucalyptus sp. | 431,012 | 4633 (0.010) | - | - |
P. nigra | 378,542 | 255 (0.06) | 165,458 | 1583 (0.957) |
P. pinea | 212,761 | 112 (0.05) | 72,239 | 998 (1.382) |
Populus sp. | 50,519 | 695 (1.375) | - | 6 Not available |
Other hardwoods | 30,033 | 21 (0.69) | - | 9 Not available |
P. uncinata | 17,322 | 1 (0.05) | 32,678 | 63 (0.193) |
N° of Obs.1524 | Model RF_FT (network 6-0-2) | ||||
---|---|---|---|---|---|
Accuracy | Observed | Pred. Crown Fire | Pred. Surface Fire | Total | |
Train | 0.98 | Crown Fire | 435 | 5 | 440 |
0.73 | Surface Fire | 108 | 305 | 413 | |
0.86 | Total | 543 | 310 | 853 | |
Test | 0.96 | Crown Fire | 175 | 6 | 181 |
0.73 | Surface Fire | 50 | 136 | 186 | |
0.84 | Total | 225 | 142 | 367 | |
Valid | 0.98 | Crown Fire | 139 | 2 | 141 |
0.74 | Surface Fire | 41 | 122 | 163 | |
0.85 | Total | 180 | 124 | 304 | |
N° of Obs. 1136 | Model NRF_FT (network 8-1-2) | ||||
Train | 0.95 | Crown Fire | 298 | 14 | 312 |
0.46 | Surface Fire | 173 | 151 | 324 | |
0.70 | Total | 471 | 165 | 636 | |
Test | 0.95 | Crown Fire | 126 | 6 | 132 |
0.41 | Surface Fire | 83 | 58 | 141 | |
0.67 | Total | 209 | 64 | 273 | |
Valid | 0.95 | Crown Fire | 119 | 5 | 124 |
0.40 | Surface Fire | 61 | 42 | 103 | |
0.70 | Total | 180 | 47 | 227 |
Input variables in the best RF_FT model | |||||||||||
Average | FT | AGE | TH | PS | FTP2 | FTP6 | |||||
Crown fire | −0.0328 | 0.0305 | 0.0218 | −0.5766 | −0.0622 | ||||||
Surface fire | 0.0328 | −0.0305 | −0.0218 | 0.5766 | 0.0622 | ||||||
Variance | AGE | TH | PS | FTP2 | FTP6 | ||||||
Crown fire | 0.0013 | 0.0004 | 0.0002 | 0.1426 | 0.0016 | ||||||
Surface fire | 0.0013 | 0.0004 | 0 | 0.1426 | 0.0016 | ||||||
Frequency | 0.69 | 0.65 | 0.96 | 0.94 | 0.93 | ||||||
Input variables in the best NRF_FT model | |||||||||||
Average | FT | AGE | CC | SS | HFS | FTP1 | FTP2 | FTP3 | FTP4 | ||
Crown fire | −0.205 | 0.097 | −0.008 | −0.025 | −0.917 | −0.618 | −0.076 | −0.493 | |||
Surface fire | 0.205 | −0.097 | 0.008 | 0.025 | 0.917 | 0.6182 | 0.076 | 0.493 | |||
Variance | AGE | CC | SS | HFS | FTP1 | FTP2 | FTP3 | FTP4 | |||
Crown fire | 0.01 | 0.001 | 9.013 | 7.719 | 0.098 | 0.0448 | 0 | 0.028 | |||
Surface fire | 0.01 | 0.001 | 9.013 | 7.719 | 0.098 | 0.0448 | 0 | 0.028 | |||
Frequency | 0.75 | 1 | 0.25 | 0.22 | 0.27 | 0.75 | 0.25 | 0.4 |
N° of Obs. 122 | Model RFPINE_FT (network 9-0-2) | ||||
---|---|---|---|---|---|
Data Subsets | Accuracy | Observed | Pred. Crown Fire | Pred. Surface Fire | Total |
Train | 0.82 | Crown fire | 23 | 5 | 28 |
0.72 | Surface fire | 11 | 29 | 40 | |
0.76 | Total | 34 | 34 | 68 | |
Test | 0.7 | Crown fire | 12 | 5 | 17 |
0.69 | Surface fire | 4 | 9 | 13 | |
0.72 | Total | 16 | 14 | 30 | |
Valid | 0.62 | Crown fire | 10 | 6 | 16 |
0.12 | Surface fire | 7 | 1 | 8 | |
0.7 | Total | 17 | 7 | 24 | |
N° of Obs. 488 | Model NRFPINE_FT (network 7-0-2) | ||||
Train | 0.67 | Crown fire | 86 | 42 | 128 |
0.55 | Surface fire | 64 | 81 | 145 | |
0.61 | Total | 150 | 123 | 273 | |
Test | 0.67 | Crown fire | 42 | 20 | 62 |
0.55 | Surface fire | 25 | 31 | 56 | |
0.61 | Total | 67 | 51 | 118 | |
Valid | 0.64 | Crown fire | 35 | 19 | 54 |
0.6 | Surface fire | 17 | 26 | 43 | |
0.62 | Total | 52 | 45 | 97 |
Input variables in the best RFPINE_FT model | ||||||||
Average | FT | AGE | CC | TH | FTP2 | FTP4 | FTP11 | FTP15 |
Crown fire | 0.829 | 0.228 | 0.207 | −0.234 | −1.055 | 0.045 | 0.096 | |
Surface fire | −0.829 | −0.228 | −0.207 | 0.234 | 1.055 | −0.045 | −0.096 | |
Variance | AGE | CC | TH | FTP2 | FTP4 | FTP11 | FTP15 | |
Crown fire | 0.236 | 0.006 | 0.005 | 0.006 | 0.119 | 0 | 0.001 | |
Surface fire | 0.236 | 0.006 | 0.005 | 0.006 | 0.119 | 0 | 0.001 | |
Frequency | 0.92 | 0.85 | 1 | 0.52 | 0.83 | 0.35 | 0.45 | |
Input variables in the best NRFPINE_FT model | ||||||||
Average | FT | CC | SS | PS | FTP2 | FTP8 | FTP11 | FTP15 |
Crown fire | 0.198 | 0.003 | −0.007 | −0.318 | 0.091 | 0.105 | 0.066 | |
Surface fire | −0.198 | −0.003 | 0.007 | 0.318 | −0.091 | −0.105 | −0.066 | |
Variance | CC | SS | PS | FTP2 | FTP8 | FTP11 | FTP15 | |
Crown fire | 0.001 | 0 | 0 | 0.002 | 0 | 0 | 0 | |
Surface fire | 0.001 | 0 | 0 | 0.002 | 0 | 0 | 0 | |
Frequency | 0.93 | 0.38 | 0.67 | 1 | 1 | 0.71 | 0.71 |
N° of Obs. 1053 | Model RFPP_FT (network 6-0-2) | ||||
---|---|---|---|---|---|
Data Subsets | Accuracy | Observed | Pred. Crown Fire | Pred. Surface Fire | Total |
Train | 0.98 | Crown Fire | 270 | 5 | 275 |
0.79 | Surface Fire | 66 | 249 | 315 | |
0.87 | Total | 336 | 254 | 590 | |
Test | 1 | Crown Fire | 128 | 0 | 128 |
0.81 | Surface Fire | 23 | 102 | 125 | |
0.9 | Total | 151 | 102 | 253 | |
Valid | 0.97 | Crown Fire | 103 | 3 | 106 |
0.77 | Surface Fire | 23 | 81 | 104 | |
0.87 | Total | 126 | 84 | 210 | |
N° of Obs. 166 | Model NRFPP_FT stands (network 5-2-2) | ||||
Train | 0.98 | Crown fire | 57 | 1 | 58 |
0.71 | Surface fire | 10 | 25 | 35 | |
0.88 | Total | 67 | 26 | 93 | |
Test | 0.9 | Crown fire | 19 | 2 | 21 |
0.73 | Surface fire | 5 | 14 | 19 | |
0.82 | Total | 24 | 16 | 40 | |
Valid | 0.83 | Crown fire | 15 | 3 | 18 |
0.6 | Surface fire | 6 | 9 | 15 | |
0.72 | Total | 21 | 12 | 33 |
Input variables in the best RFPP_FT model | |||||||||
FT | CC | SD | TH | SS | PS | FTP2 | |||
Average | Crown fire | −0.092 | −0.012 | 0.021 | 0.022 | 0.001 | −0,499 | ||
Surface fire | 0.092 | 0.012 | −0.021 | −0.022 | −0.001 | 0,499 | |||
CC | SD | TH | SS | PS | FTP2 | ||||
Variance | Crown fire | 0.004 | 7.183 | 0 | 0 | 1.611 | 0,122 | ||
Surface fire | 0.004 | 7.183 | 0 | 0 | 1.611 | 0,122 | |||
Frequency | 0.64 | 0.86 | 0.21 | 0.32 | 0.36 | 0,57 | |||
Input variables in NRFPP_FT model | |||||||||
FT | HFS | FTP1 | FTP2 | FTP5 | FTP9 | ||||
Average | Crown fire | −0.997 | −0.213 | −0.578 | −1.273 | −1.069 | |||
Surface fire | 0.997 | 0.213 | 0.578 | 1.273 | 1.069 | ||||
HFS | FTP1 | FTP2 | FTP5 | FTP9 | |||||
Variance | Crown fire | 0.303 | 0.013 | 0.102 | 0.495 | 0.348 | |||
Surface fire | 0.303 | 0.013 | 0.102 | 0.495 | 0.348 | ||||
Frequency | 1 | 0.31 | 0.92 | 0.54 | 0.66 |
N° of Obs. 330 | Model RFE_FT (network 6-0-2) | ||||
---|---|---|---|---|---|
Data Subsets | Accuracy | Observed | Pred. Crown Fire | Pred. Surface Fire | Total |
Train | 0.95 | Crown fire | 83 | 4 | 87 |
0.77 | Surface fire | 22 | 75 | 97 | |
0.85 | Total | 105 | 79 | 184 | |
Test | 0.92 | Crown fire | 38 | 3 | 41 |
0.84 | Surface fire | 6 | 33 | 39 | |
0.88 | Total | 44 | 36 | 80 | |
Valid | 0.96 | Crown fire | 30 | 1 | 31 |
0.74 | Surface fire | 9 | 26 | 35 | |
0.84 | Total | 39 | 27 | 66 |
Input Variables in the Best RFE_FT Model | |||||||
---|---|---|---|---|---|---|---|
FT | AGE | CC | FTP3 | FTP6 | FTP8 | FTP9 | |
Average | Crown fire | −0.004 | −0.097 | 0.361 | 0.348 | 0.514 | −0.05 |
Surface fire | 0.004 | 0.097 | −0.361 | −0.348 | −0.514 | 0.05 | |
AGE | CC | FTP3 | FTP6 | FTP8 | FTP9 | ||
Variance | Crown fire | 0.002 | 0.006 | 0.078 | 0.072 | 0.158 | 0.001 |
Surface fire | 0.002 | 0.006 | 0.078 | 0.072 | 0.158 | 0.001 | |
Frequency | 0.8 | 0.5 | 0.91 | 0.25 | 0.81 | 0.56 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Da Ponte, E.; Costafreda-Aumedes, S.; Vega-Garcia, C. Lessons Learned from Arson Wildfire Incidence in Reforestations and Natural Stands in Spain. Forests 2019, 10, 229. https://doi.org/10.3390/f10030229
Da Ponte E, Costafreda-Aumedes S, Vega-Garcia C. Lessons Learned from Arson Wildfire Incidence in Reforestations and Natural Stands in Spain. Forests. 2019; 10(3):229. https://doi.org/10.3390/f10030229
Chicago/Turabian StyleDa Ponte, Emmanuel, Sergi Costafreda-Aumedes, and Cristina Vega-Garcia. 2019. "Lessons Learned from Arson Wildfire Incidence in Reforestations and Natural Stands in Spain" Forests 10, no. 3: 229. https://doi.org/10.3390/f10030229
APA StyleDa Ponte, E., Costafreda-Aumedes, S., & Vega-Garcia, C. (2019). Lessons Learned from Arson Wildfire Incidence in Reforestations and Natural Stands in Spain. Forests, 10(3), 229. https://doi.org/10.3390/f10030229