Lessons Learned from Arson Wildfire Incidence in Reforestations and Natural Stands in Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reforestation Historical Data
2.2. Fire Historical Data
2.3. Database for Model Building
2.4. The Modeling Approach: Artificial Neural Network (ANN) Models
3. Results
3.1. Models RF_FT and NRF_FT: Fire Type in Reforested and Natural Stands (All Species)
3.2. Models RFPINE_FT and NRFPINE_FT: Fire Type in Continental Mediterranean Mountain Pines in Reforested and in Natural Stands (P. halepensis, P. nigra, P. sylvestris)
3.3. Models RFPP_FT and NRFPP_FT: Fire Type in P. pinaster in Reforested and in Natural Stands
3.4. Models RFE_FT: Eucalyptus Artificial Stands
4. Discussion
4.1. Wildfire Incidence: Occurrence in Reforested and Nonreforested Stands
4.2. Wildfire Incidence: Neural Network Models for Fire Behaviour
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ministerio de Agricultura y Pesca Alimentación y Medio Ambiente (MAPAMA) Estadística General de Incendios Forestales. Memoria 2017, 32. Available online: https://www.mapa.gob.es/es/desarrollo-rural/estadisticas/Incendios_default.aspx (accessed on 5 February 2018).
- Camia, A.; Durrant, T.; San-Miguel Ayanz, J. Harmonized classification scheme of fire causes in the EU adopted for the European Fire Database of EFFIS; Scientific and Technical Research Report for UN: Luxemburg, 2013; pp. 1–51. [Google Scholar] [CrossRef]
- Prestemon, J.P.; Butry, D.T. Wildland arson management. In The Economics of Forest Disturbances; Holmes, T., Prestemon, J.P., Abt, K., Eds.; Springer Science & Business Media: Dordrecht, The Netherlands, 2008; pp. 123–147. [Google Scholar]
- Simon, L.; Clément, V.; Pech, P. Forestry disputes in provincial France during the nineteenth century: The case of the Montagne de Lure. J. Hist. Geogr. 2007, 33, 335–351. [Google Scholar] [CrossRef]
- Álvarez, P.; De la Fuente, E.I.; García, J.; De la Fuente, L. Psychosocial variables in the determination of the verdict object in trials for environmental crimes in Spain. Environ. Behav. 2009, 41, 509–525. [Google Scholar] [CrossRef]
- Fuentes-Santos, I.; Marey-Pérez, M.F.; González-Manteiga, W. Forest fire spatial pattern analysis in Galicia (NW Spain). J. Environ. Manag. 2013, 128, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Molina, D.M. Origins of Arson in Northwestern Spain. Fire Manag. Notes 1997, 57, 18–23. [Google Scholar] [CrossRef]
- Cabana Iglesia, A. Los incendios en el monte comunal gallego. Lugo durante el primer franquismo. Hist. Agrar. 2007, 17, 555–577. [Google Scholar]
- Ganteaume, A.; Camia, A.; Jappiot, M.; San-Miguel-Ayanz, J.; Long-Fournel, M.; Lampin, C. A review of the main driving factors of forest fire ignition over Europe. Environ. Manag. 2013, 51, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Vega-Garcia, C.; Woodard, P.M.; Titus, S.J.; Adamowicz, W.L.; Lee, B.S. A Logit Model for Predicting the Daily Occurrence of Human Caused Forest-Fires. Int. J. Wildl. Fire 1995, 5, 101–111. [Google Scholar] [CrossRef]
- Nunes, M.C.S.; Vasconcelos, M.J.; Pereira, J.M.C.; Dasgupta, N.; Alldredge, R.J.; Rego, F.C. Land Cover Type and Fire in Portugal: Do Fires Burn Land Cover Selectively? Landsc. Ecol. 2005, 20, 661–673. [Google Scholar] [CrossRef]
- González, J.R.; Palahí, M.; Trasobares, A.; Pukkala, T. A fire probability model for forest stands in Catalonia (North-East Spain). Ann. For. Sci. 2006, 63, 169–176. [Google Scholar] [CrossRef]
- Kalabokidis, K.D.; Koutsias, N.; Konstantinidis, P.; Vasilakos, C. Multivariate analysis of landscape wildfire dynamics in a Mediterranean ecosystem of Greece. Area 2007, 39, 392–402. [Google Scholar] [CrossRef]
- Garcia-Gonzalo, J.; Zubizarreta-Gerendiain, A.; Ricardo, A.; Marques, S.; Botequim, B.; Borges, J.G.; Oliveira, M.M.; Tomé, M.; Pereira, J.M.C. Modelling wildfire risk in pure and mixed forest stands in Portugal. Allg. Forst und Jagdzeitung 2012, 183, 238–248. [Google Scholar]
- Barreal, J.; Loureiro, M.L. Modelling spatial patterns and temporal trends of wildfires in Galicia (NW Spain). For. Syst. 2015, 24, e022. [Google Scholar] [CrossRef] [Green Version]
- Padilla, M.; Vega-García, C. On the comparative importance of fire danger rating indices and their integration with spatial and temporal variables for predicting daily human-caused fire occurrences in Spain. Int. J. Wildl. Fire 2011, 20, 46–58. [Google Scholar] [CrossRef]
- Álvarez, R.; Muñoz, A.; Pesqueira, X.M.; García-Duro, J.; Reyes, O.; Casal, M. Spatial and temporal patterns in structure and diversity of Mediterranean forest of Quercus pyrenaica in relation to fire. For. Ecol. Manag. 2009, 257, 1596–1602. [Google Scholar] [CrossRef]
- Ruiz-Benito, P.; Gómez-Aparicio, L.; Zavala, M.A. Large-scale assessment of regeneration and diversity in Mediterranean planted pine forests along ecological gradients. Divers. Distrib. 2012, 18, 1092–1106. [Google Scholar] [CrossRef]
- Barbero Bonin, G.; Loisel, R.; Quézel, P.M. Changes and disturbances of forest ecosystems caused by human activities in the western part of the Mediterranean basin. Vegetatio 1990, 87, 151–193. [Google Scholar] [CrossRef]
- Schelhaas, M.J.; Hengeveld, G.; Moriondo, M.; Reinds, G.J.; Kundzewicz, Z.W.; ter Maat, H.; Bindi, M. Assessing risk and adaptation options to fires and windstorms in European forestry. Mitig. Adapt. Strateg. Glob. Chang. 2010, 15, 681–701. [Google Scholar] [CrossRef] [Green Version]
- Sheffer, E. A review of the development of Mediterranean pine-oak ecosystems after land abandonment and afforestation: Are they novel ecosystems? Ann. For. Sci. 2012, 69, 429–443. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Food and Agriculture Organization Global Forest Resources Assessment 2005: Progress towards Sustainable Forest Management; Food and Agriculture Organization: Rome, Italy, 2006; ISBN 9251054819. [Google Scholar]
- Nolet, P.; Béland, M. Long-term susceptibility of even-and uneven-aged northern hardwood stands to partial windthrow. Forests 2017, 8. [Google Scholar] [CrossRef]
- Schall, P.; Gossner, M.M.; Heinrichs, S.; Fischer, M.; Boch, S.; Prati, D.; Jung, K.; Baumgartner, V.; Blaser, S.; Böhm, S.; et al. The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests. J. Appl. Ecol. 2018, 55, 267–278. [Google Scholar] [CrossRef]
- Elia, M.; Lafortezza, R.; Lovreglio, R.; Sanesi, G. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland–Urban Interfaces in Southern Italy. Environ. Manag. 2015, 56, 754–764. [Google Scholar] [CrossRef] [PubMed]
- Zavala, M.A.; Zea, E. Mechanisms maintaining biodiversity in Mediterranean pine-oak forests: Insights from a spatial simulation model. Plant Ecol. 2004, 171, 197–207. [Google Scholar] [CrossRef]
- Gömöry, D.; Paule, L. Management implications of intrapopulation and nterpopulation genetic variation in Norway spruce. In Close to Nature Forestry; Novotny, J., Ed.; Forest Research Institute: Zvolen, Slovakia, 2004; pp. 129–137. [Google Scholar]
- Pausas, J.G.; Llovet, J.; Rodrigo, A.; Vallejo, R. Are wildfires a disaster in the Mediterranean basin?—A review. Int. J. Wildl. Fire 2008, 17, 713. [Google Scholar] [CrossRef]
- Vega-García, C.; Chuvieco, E. Applying local measures of spatial heterogeneity to Landsat-TM images for predicting wildfire occurrence in Mediterranean landscapes. Landsc. Ecol. 2006, 21, 595–605. [Google Scholar] [CrossRef]
- Martínez, J.; Vega-Garcia, C.; Chuvieco, E. Human-caused wildfire risk rating for prevention planning in Spain. J. Environ. Manag. 2009, 90, 1241–1252. [Google Scholar] [CrossRef] [PubMed]
- Badia, A. Causality and management of forest fires in Mediterranean environments: an example from Catalonia. Glob. Environ. Chang. Part B Environ. Hazards 2002, 4, 23–32. [Google Scholar] [CrossRef]
- González, J.R.; Pukkala, T. Characterization of forest fires in Catalonia (north-east Spain). Eur. J. For. Res. 2007, 126, 421–429. [Google Scholar] [CrossRef]
- Moreno, J.M.; Vazquez, A.; Velez, R. Recent history of forest fires in Spain. In Large forest fires; Moreno, J., Ed.; Backhuys Publishers: Leiden, The Netherlands, 1998; pp. 159–185. [Google Scholar]
- Pausas, J.G.; Fernandez-Muñoz, S. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Clim. Change 2012, 110, 215–226. [Google Scholar] [CrossRef]
- Jiménez-Ruano, A.; Rodrigues Mimbrero, M.; de la Riva, J. Exploring spatial—Temporal dynamics of fire regime features in mainland Spain. Nat. Hazards Earth Syst. Sci. 2017, 17, 1697–1711. [Google Scholar] [CrossRef]
- Claessens, S.; Dell’Ariccia, G.; Igan, D.; Laeven, L. Cross-country experiences and policy implications from the global financial crisis. Glob. linkages Glob. policies 2010, 25, 267–293. [Google Scholar] [CrossRef]
- Collantes, F.; Pinilla, V.; Sáez, L.A.; Silvestre, J. Reducing depopulation in rural Spain: The impact of immigration. Popul. Space Place 2014, 20, 606–621. [Google Scholar] [CrossRef]
- WWF/Adena ¿Recuperando bosques o plantando incendios? Un análisis de WWF sobre el futuro de los grandes incendios forestales en España. 2010. Available online: http://assets.wwf.es/downloads/incendios_forestales_2010_lr.pdf (accessed on 15 June 2018).
- Ruiz de la Torre, J. Memoria general del Mapa Forestal de España, 1:200000. Ministerio de Agricultura, Pesca y Alimentación. ICONA, 1990; 191. [Google Scholar]
- Costafreda-Aumedes, S.; Garcia-Martin, A.; Vega-Garcia, C. The relationship between landscape patterns and human-caused fire occurrence in Spain. For. Syst. 2013, 22, 71–81. [Google Scholar] [CrossRef]
- Instituto Nacional para la Conservación de la Naturaleza (Espanya). Memoria sobre las actividades de este Instituto, ICONA (1973-1982); Ministerio de Agricultura: Madrid, Spain, 1983.
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels. USDA For. Serv. Res. Pap. INT USA 1972, 40. Available online: https://www.fs.fed.us/rm/pubs_int/int_rp115.pdf (accessed on 20 June 2018).
- Costafreda-Aumedes, S.; Vega-Garcia, C. ANN multivariate analysis of factors that influence human-caused multiple fire starts. In Advances in Forest Fire Research; Imprensa da Universidade de Coimbra, 2014; Volume 4, pp. 1787–1798. [Google Scholar] [CrossRef]
- Vasconcelos, M.J.P.; Silva, S.; Tomé, M.; Alvim, M.; Cardoso Pereira, J.M. Spatial Prediction of Fire Ignition Probabilities: Comparing Logistic Regression and Neural Networks. Photogramm. Eng. Remote Sens. 2001, 67, 73–81. [Google Scholar]
- Scrinzi, G.; Marzullo, L.; Galvagni, D. Development of a neural network model to update forest distribution data for managed alpine stands. Ecol. Modell. 2007, 206, 331–346. [Google Scholar] [CrossRef]
- Fahlman, S.E.; Lebiere, C. The Cascade-Correlation Learning Architecture. In Advances in Neural Information Processing Systems 2; Morgan Kaufmann Publisher: San Francisco, CA, USA, 1990; pp. 524–532. [Google Scholar]
- NeuralWare NeuralWorks Predict, The Complete Solution for Neural Data Modelling; User’s Guide, Version 3.24; NeuralWare: Carnergie, PA, USA, 2009.
- Alcázar, J.; Palau, A.; Vega-Garcia, C. A neural net model for environmental flow estimation at the Ebro River Basin, Spain. J. Hydrol. 2008, 349, 44–55. [Google Scholar] [CrossRef]
- Debouk, H.; Riera-Tatché, R.; Vega-García, C. Assessing Post-Fire Regeneration in a Mediterranean Mixed Forest Using Lidar Data and Artificial Neural Networks. Photogramm. Eng. Remote Sens. 2013, 79, 1121–1130. [Google Scholar] [CrossRef]
- Werbos, P.J. The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting; Wiley-Interscience: New York, NY, USA, 1994; ISBN 0-471-59897-6. [Google Scholar]
- Jutras, P.; Prasher, S.O.; Mehuys, G.R. Prediction of street tree morphological parameters using artificial neural networks. Comput. Electron. Agric. 2009, 67, 9–17. [Google Scholar] [CrossRef]
- Castroviejo, S.; García-Dorny, M.A.; Martínez, S.; Prieto, F. Política forestal en España (1940–1985). Quercus 1985, 19, 5–51. [Google Scholar]
- Ministerio de Agricultura y Pesca Alimentación. Segundo Inventario Forestal Nacional 198-1995. Explicaciones y métodos; ICONA, Ed.; EGRAF S.A.: Madrid, Spain, 2007; ISBN 84-85496-60-4. [Google Scholar]
- Cardil, A.; Molina, D. Large wildland fires in three diverse regions in Spain from 1978 to 2010. For. Syst. 2013, 22, 526–534. [Google Scholar] [CrossRef]
- Dimitrakopoulos, A.P. Mediterranean fuel models and potential fire behaviour in Greece. Int. J. Wildl. Fire 2002, 11, 127–130. [Google Scholar] [CrossRef]
- Fernandez, C.; Vega, J.A.; Gras, J.M.; Fonturbel, T. Changes in water yield after a sequence of perturbations and forest management practices in an Eucalyptus globulus Labill. watershed in Northern Spain. For. Ecol. Manag. 2006, 234, 275–281. [Google Scholar] [CrossRef]
- Prasad, V.K.; Badarinath, K.V.S.; Eaturu, A. Biophysical and anthropogenic controls of forest fires in the Deccan Plateau, India. J. Environ. Manag. 2008, 86, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J.M.; Viedma, O.; Zavala, G.; Luna, B. Landscape variables influencing forest fires in central Spain. Int. J. Wildl. Fire 2011, 20, 678–689. [Google Scholar] [CrossRef]
- Finney, M.A. Mechanistic modeling of landscape fire patterns. In Spatial Modeling of Forest Landscapes: Approaches and Applications. Cambridge University Press, Cambridge; Mladenoff, D.J., Baker, W., Eds.; University Press: Cambrige, MA, USA, 1999; pp. 186–209. [Google Scholar]
- Pollet, J.; Omi, P.N. Effect of thinning and prescribed burning on crown fire severity in ponderosa pine forests. Int. J. Wildl. Fire 2002, 11, 1–10. [Google Scholar] [CrossRef]
- Tragsatec. Plan de selvicultura preventiva de incendios en los sistemas forestales de la Comunidad Valenciana. Memoria 1996. 420 pags. Available online: http://www.agroambient.gva.es/auto/prevencion-incendios/Por-demarcacion/Chelva/06.%20Plan%20de%20infraestructuras/Anexos/Plan_selvicultura_preventiva.pdf (accessed on 10 September 2018).
- Pasalodos-Tato, M.; Pukkala, T.; Rojo Alboreca, A. Optimal management of Pinus pinaster in Galicia (Spain) under risk of fire. Int. J. Wildl. Fire 2010, 19, 937–948. [Google Scholar] [CrossRef]
- Casals, P.; Valor, T.; Besalú, A.; Molina-Terrén, D. Understory fuel load and structure eight to nine years after prescribed burning in Mediterranean pine forests. For. Ecol. Manag. 2016, 362, 156–168. [Google Scholar] [CrossRef]
- Fernandes, P.M. Scientific support to prescribed underburning in southern Europe: What do we know? Sci. Total Environ. 2018, 630, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Piqué, M.; Domènech, R. Effectiveness of mechanical thinning and prescribed burning on fire behavior in Pinus nigra forests in NE Spain. Sci. Total Environ. 2018, 618, 1539–1546. [Google Scholar] [CrossRef] [PubMed]
- Palmero-Iniesta, M.; Domènech, R.; Molina-Terrén, D.; Espelta, J.M. Fire behavior in Pinus halepensis thickets: Effects of thinning and woody debris decomposition in two rainfall scenarios. For. Ecol. Manag. 2017, 404, 230–240. [Google Scholar] [CrossRef]
- Molina, J.R.; García, J.P.; Fernández, J.J.; Rodríguez y Silva, F. Prescribed fire experiences on crop residue removal for biomass exploitations. Application to the maritime pine forests in the Mediterranean Basin. Sci. Total Environ. 2018, 612, 63–70. [Google Scholar] [CrossRef] [PubMed]
Acronym | Description | Acronym | Description |
---|---|---|---|
AGE | Mean Age | FTP5 | Grasses and bushes |
CC | Canopy cover | FTP6 | Grasses and forest |
SD | Seedling stage | FTP7 | Grasses and slash |
SS | Sapling stage | FTP8 | Bushes and forest |
TH | Thicket stage | FTP9 | Bushes and slash |
PS | Pole stage | FTP10 | Forest and slash |
HFS | High-forest | FTP11 | Grasses, bushes, and forest |
FTP1 | Grasses | FTP12 | Grasses, bushes and slash |
FTP2 | Bushes | FTP13 | Grasses, forest and slash |
FTP3 | Forest | FTP14 | Bushes, forests and slash |
FTP4 | Wood slash | FTP15 | Grasses, bushes, forest, and slash |
Dependent Variables | Surface Features | Number of Observations |
---|---|---|
Fire type | Reforested stands (All species) (RF_FT) | 1524 |
Not reforested stands (All species) (NRF_FT) | 1136 | |
Reforested Pine sp. (RFPINE_FT) | 122 | |
Natural Pine stands (NRFPINE_FT) | 488 | |
Reforested P. pinaster (RFPP_FT) | 1054 | |
Natural stands of P. pinaster Ait. (NRFPP_FT) | 167 | |
Eucalyptus sp. (RFE_FT) | 330 | |
Burned area | Reforestations (RF_BA) | 1291 |
Not Reforested stands (NRF_BA) | 923 | |
Reforested Pine sp. (RFPINE_BA) | 59 | |
Natural Pine stands (NRFPINE_BA) | 306 | |
Reforested P. Pinaster (RFPP_BA) | 886 | |
Natural stands of P. Pinaster (NRFPP_BA) | 125 | |
Eucalyptus sp. (RFE_BA) | 298 | |
Total tree burned area | Reforestations (RF_TBA) | 924 |
Not reforested stands (NRF_TBA) | 597 | |
Reforested Pine sp. (RFPINE_TBA) | 40 | |
Natural Pine stands (NRFPINE_TBA) | 146 | |
Reforested P. pinaster (RFPP_TBA) | 657 | |
Natural stands of P. pinaster (NRFPP_TBA) | 98 | |
Eucalyptus sp. (RFE_TBA) | 192 |
Species | Total RF Surface (ha) | N° Ignition Points in RF (N° Ig/100 ha) | Total NRF (ha) | N° Ignition Points in NRF (N° Ig/100 ha) |
---|---|---|---|---|
P. pinaster | 782,414 | 14,908 (1.90) | 517,586 | 1888 (0.365) |
P. sylvestris | 552,973 | 663 (0.11) | 227,027 | 690 (0.304) |
P. halepensis | 466,282 | 535 (0.11) | 673,718 | 4850 (0.720) |
Eucalyptus sp. | 431,012 | 4633 (0.010) | - | - |
P. nigra | 378,542 | 255 (0.06) | 165,458 | 1583 (0.957) |
P. pinea | 212,761 | 112 (0.05) | 72,239 | 998 (1.382) |
Populus sp. | 50,519 | 695 (1.375) | - | 6 Not available |
Other hardwoods | 30,033 | 21 (0.69) | - | 9 Not available |
P. uncinata | 17,322 | 1 (0.05) | 32,678 | 63 (0.193) |
N° of Obs.1524 | Model RF_FT (network 6-0-2) | ||||
---|---|---|---|---|---|
Accuracy | Observed | Pred. Crown Fire | Pred. Surface Fire | Total | |
Train | 0.98 | Crown Fire | 435 | 5 | 440 |
0.73 | Surface Fire | 108 | 305 | 413 | |
0.86 | Total | 543 | 310 | 853 | |
Test | 0.96 | Crown Fire | 175 | 6 | 181 |
0.73 | Surface Fire | 50 | 136 | 186 | |
0.84 | Total | 225 | 142 | 367 | |
Valid | 0.98 | Crown Fire | 139 | 2 | 141 |
0.74 | Surface Fire | 41 | 122 | 163 | |
0.85 | Total | 180 | 124 | 304 | |
N° of Obs. 1136 | Model NRF_FT (network 8-1-2) | ||||
Train | 0.95 | Crown Fire | 298 | 14 | 312 |
0.46 | Surface Fire | 173 | 151 | 324 | |
0.70 | Total | 471 | 165 | 636 | |
Test | 0.95 | Crown Fire | 126 | 6 | 132 |
0.41 | Surface Fire | 83 | 58 | 141 | |
0.67 | Total | 209 | 64 | 273 | |
Valid | 0.95 | Crown Fire | 119 | 5 | 124 |
0.40 | Surface Fire | 61 | 42 | 103 | |
0.70 | Total | 180 | 47 | 227 |
Input variables in the best RF_FT model | |||||||||||
Average | FT | AGE | TH | PS | FTP2 | FTP6 | |||||
Crown fire | −0.0328 | 0.0305 | 0.0218 | −0.5766 | −0.0622 | ||||||
Surface fire | 0.0328 | −0.0305 | −0.0218 | 0.5766 | 0.0622 | ||||||
Variance | AGE | TH | PS | FTP2 | FTP6 | ||||||
Crown fire | 0.0013 | 0.0004 | 0.0002 | 0.1426 | 0.0016 | ||||||
Surface fire | 0.0013 | 0.0004 | 0 | 0.1426 | 0.0016 | ||||||
Frequency | 0.69 | 0.65 | 0.96 | 0.94 | 0.93 | ||||||
Input variables in the best NRF_FT model | |||||||||||
Average | FT | AGE | CC | SS | HFS | FTP1 | FTP2 | FTP3 | FTP4 | ||
Crown fire | −0.205 | 0.097 | −0.008 | −0.025 | −0.917 | −0.618 | −0.076 | −0.493 | |||
Surface fire | 0.205 | −0.097 | 0.008 | 0.025 | 0.917 | 0.6182 | 0.076 | 0.493 | |||
Variance | AGE | CC | SS | HFS | FTP1 | FTP2 | FTP3 | FTP4 | |||
Crown fire | 0.01 | 0.001 | 9.013 | 7.719 | 0.098 | 0.0448 | 0 | 0.028 | |||
Surface fire | 0.01 | 0.001 | 9.013 | 7.719 | 0.098 | 0.0448 | 0 | 0.028 | |||
Frequency | 0.75 | 1 | 0.25 | 0.22 | 0.27 | 0.75 | 0.25 | 0.4 |
N° of Obs. 122 | Model RFPINE_FT (network 9-0-2) | ||||
---|---|---|---|---|---|
Data Subsets | Accuracy | Observed | Pred. Crown Fire | Pred. Surface Fire | Total |
Train | 0.82 | Crown fire | 23 | 5 | 28 |
0.72 | Surface fire | 11 | 29 | 40 | |
0.76 | Total | 34 | 34 | 68 | |
Test | 0.7 | Crown fire | 12 | 5 | 17 |
0.69 | Surface fire | 4 | 9 | 13 | |
0.72 | Total | 16 | 14 | 30 | |
Valid | 0.62 | Crown fire | 10 | 6 | 16 |
0.12 | Surface fire | 7 | 1 | 8 | |
0.7 | Total | 17 | 7 | 24 | |
N° of Obs. 488 | Model NRFPINE_FT (network 7-0-2) | ||||
Train | 0.67 | Crown fire | 86 | 42 | 128 |
0.55 | Surface fire | 64 | 81 | 145 | |
0.61 | Total | 150 | 123 | 273 | |
Test | 0.67 | Crown fire | 42 | 20 | 62 |
0.55 | Surface fire | 25 | 31 | 56 | |
0.61 | Total | 67 | 51 | 118 | |
Valid | 0.64 | Crown fire | 35 | 19 | 54 |
0.6 | Surface fire | 17 | 26 | 43 | |
0.62 | Total | 52 | 45 | 97 |
Input variables in the best RFPINE_FT model | ||||||||
Average | FT | AGE | CC | TH | FTP2 | FTP4 | FTP11 | FTP15 |
Crown fire | 0.829 | 0.228 | 0.207 | −0.234 | −1.055 | 0.045 | 0.096 | |
Surface fire | −0.829 | −0.228 | −0.207 | 0.234 | 1.055 | −0.045 | −0.096 | |
Variance | AGE | CC | TH | FTP2 | FTP4 | FTP11 | FTP15 | |
Crown fire | 0.236 | 0.006 | 0.005 | 0.006 | 0.119 | 0 | 0.001 | |
Surface fire | 0.236 | 0.006 | 0.005 | 0.006 | 0.119 | 0 | 0.001 | |
Frequency | 0.92 | 0.85 | 1 | 0.52 | 0.83 | 0.35 | 0.45 | |
Input variables in the best NRFPINE_FT model | ||||||||
Average | FT | CC | SS | PS | FTP2 | FTP8 | FTP11 | FTP15 |
Crown fire | 0.198 | 0.003 | −0.007 | −0.318 | 0.091 | 0.105 | 0.066 | |
Surface fire | −0.198 | −0.003 | 0.007 | 0.318 | −0.091 | −0.105 | −0.066 | |
Variance | CC | SS | PS | FTP2 | FTP8 | FTP11 | FTP15 | |
Crown fire | 0.001 | 0 | 0 | 0.002 | 0 | 0 | 0 | |
Surface fire | 0.001 | 0 | 0 | 0.002 | 0 | 0 | 0 | |
Frequency | 0.93 | 0.38 | 0.67 | 1 | 1 | 0.71 | 0.71 |
N° of Obs. 1053 | Model RFPP_FT (network 6-0-2) | ||||
---|---|---|---|---|---|
Data Subsets | Accuracy | Observed | Pred. Crown Fire | Pred. Surface Fire | Total |
Train | 0.98 | Crown Fire | 270 | 5 | 275 |
0.79 | Surface Fire | 66 | 249 | 315 | |
0.87 | Total | 336 | 254 | 590 | |
Test | 1 | Crown Fire | 128 | 0 | 128 |
0.81 | Surface Fire | 23 | 102 | 125 | |
0.9 | Total | 151 | 102 | 253 | |
Valid | 0.97 | Crown Fire | 103 | 3 | 106 |
0.77 | Surface Fire | 23 | 81 | 104 | |
0.87 | Total | 126 | 84 | 210 | |
N° of Obs. 166 | Model NRFPP_FT stands (network 5-2-2) | ||||
Train | 0.98 | Crown fire | 57 | 1 | 58 |
0.71 | Surface fire | 10 | 25 | 35 | |
0.88 | Total | 67 | 26 | 93 | |
Test | 0.9 | Crown fire | 19 | 2 | 21 |
0.73 | Surface fire | 5 | 14 | 19 | |
0.82 | Total | 24 | 16 | 40 | |
Valid | 0.83 | Crown fire | 15 | 3 | 18 |
0.6 | Surface fire | 6 | 9 | 15 | |
0.72 | Total | 21 | 12 | 33 |
Input variables in the best RFPP_FT model | |||||||||
FT | CC | SD | TH | SS | PS | FTP2 | |||
Average | Crown fire | −0.092 | −0.012 | 0.021 | 0.022 | 0.001 | −0,499 | ||
Surface fire | 0.092 | 0.012 | −0.021 | −0.022 | −0.001 | 0,499 | |||
CC | SD | TH | SS | PS | FTP2 | ||||
Variance | Crown fire | 0.004 | 7.183 | 0 | 0 | 1.611 | 0,122 | ||
Surface fire | 0.004 | 7.183 | 0 | 0 | 1.611 | 0,122 | |||
Frequency | 0.64 | 0.86 | 0.21 | 0.32 | 0.36 | 0,57 | |||
Input variables in NRFPP_FT model | |||||||||
FT | HFS | FTP1 | FTP2 | FTP5 | FTP9 | ||||
Average | Crown fire | −0.997 | −0.213 | −0.578 | −1.273 | −1.069 | |||
Surface fire | 0.997 | 0.213 | 0.578 | 1.273 | 1.069 | ||||
HFS | FTP1 | FTP2 | FTP5 | FTP9 | |||||
Variance | Crown fire | 0.303 | 0.013 | 0.102 | 0.495 | 0.348 | |||
Surface fire | 0.303 | 0.013 | 0.102 | 0.495 | 0.348 | ||||
Frequency | 1 | 0.31 | 0.92 | 0.54 | 0.66 |
N° of Obs. 330 | Model RFE_FT (network 6-0-2) | ||||
---|---|---|---|---|---|
Data Subsets | Accuracy | Observed | Pred. Crown Fire | Pred. Surface Fire | Total |
Train | 0.95 | Crown fire | 83 | 4 | 87 |
0.77 | Surface fire | 22 | 75 | 97 | |
0.85 | Total | 105 | 79 | 184 | |
Test | 0.92 | Crown fire | 38 | 3 | 41 |
0.84 | Surface fire | 6 | 33 | 39 | |
0.88 | Total | 44 | 36 | 80 | |
Valid | 0.96 | Crown fire | 30 | 1 | 31 |
0.74 | Surface fire | 9 | 26 | 35 | |
0.84 | Total | 39 | 27 | 66 |
Input Variables in the Best RFE_FT Model | |||||||
---|---|---|---|---|---|---|---|
FT | AGE | CC | FTP3 | FTP6 | FTP8 | FTP9 | |
Average | Crown fire | −0.004 | −0.097 | 0.361 | 0.348 | 0.514 | −0.05 |
Surface fire | 0.004 | 0.097 | −0.361 | −0.348 | −0.514 | 0.05 | |
AGE | CC | FTP3 | FTP6 | FTP8 | FTP9 | ||
Variance | Crown fire | 0.002 | 0.006 | 0.078 | 0.072 | 0.158 | 0.001 |
Surface fire | 0.002 | 0.006 | 0.078 | 0.072 | 0.158 | 0.001 | |
Frequency | 0.8 | 0.5 | 0.91 | 0.25 | 0.81 | 0.56 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Da Ponte, E.; Costafreda-Aumedes, S.; Vega-Garcia, C. Lessons Learned from Arson Wildfire Incidence in Reforestations and Natural Stands in Spain. Forests 2019, 10, 229. https://doi.org/10.3390/f10030229
Da Ponte E, Costafreda-Aumedes S, Vega-Garcia C. Lessons Learned from Arson Wildfire Incidence in Reforestations and Natural Stands in Spain. Forests. 2019; 10(3):229. https://doi.org/10.3390/f10030229
Chicago/Turabian StyleDa Ponte, Emmanuel, Sergi Costafreda-Aumedes, and Cristina Vega-Garcia. 2019. "Lessons Learned from Arson Wildfire Incidence in Reforestations and Natural Stands in Spain" Forests 10, no. 3: 229. https://doi.org/10.3390/f10030229