Slow Recovery of Major Soil Nutrient Pools during Reclamation in a Sub-Alpine Copper Mine Area, Southeastern Edge of the Tibetan Plateau, Sichuan Province, SW China
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sampling and Analyses
2.3. Calculations
2.4. Statistics
3. Results
3.1. Soil Properties
3.2. Variations in soil C, N and P
3.3. Variations in Soil Microbial Biomass C, N, and P
3.4. Rate of Accumulation of Soil C and N
4. Discussion
4.1. Variation in Soil Properties
4.2. Variation in Major soil nutrients
4.3. Accumulation Rates of C and N
4.4. Slow Increase in Soil Nutrient Pools in Sub-Alpine Mine Site
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, M.S. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: A review of research and practice. Sci. Total Environ. 2006, 357, 38–53. [Google Scholar] [CrossRef]
- Wang, L.; Ji, B.; Hu, Y.H.; Liu, R.Q.; Sun, W. A review on in situ phytoremediation of mine tailings. Chemosphere 2017, 184, 594–600. [Google Scholar] [CrossRef]
- Yao, R.J.; Yang, J.S.; Gao, P.; Zhang, J.B.; Jin, W.H. Determining minimum data set for soil quality assessment of typical salt-affected farmland in the coastal reclamation area. Soil Tillage Res. 2013, 128, 137–148. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Maiti, S.K.; Masto, R.E. Development of mine soil quality index (MSQI) for evaluation of reclamation success: A chronosequence study. Ecol. Eng. 2014, 71, 10–20. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Masto, R.E.; Yadav, A.; George, J.; Ram, L.C.; Shukla, S.P. Soil quality index for evaluation of reclaimed coal mine spoil. Sci. Total Environ. 2016, 542, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F.; Huang, L.B. Toward a New Paradigm for tailings phytostabilization-nature of the substrates, amendment options, and anthropogenic pedogenesis. Crit. Rev. Environ. Sci. Technol. 2015, 45, 813–839. [Google Scholar] [CrossRef]
- Shrestha, R.K.; Lal, R. Changes in physical and chemical properties of soil after surface mining and reclamation. Geoderma 2011, 161, 168–176. [Google Scholar] [CrossRef]
- Akala, V.A.; Lal, R. Soil organic carbon pools and sequestration rates in reclaimed minesoils in Ohio. J. Environ. Qual. 2001, 30, 2098–2104. [Google Scholar] [CrossRef] [PubMed]
- Ganjegunte, G.K.; Wick, A.F.; Stahl, P.D.; Vance, G.F. Accumulation and composition of total organic carbon in reclaimed coal mine lands. Land Degrad. Dev. 2009, 20, 156–175. [Google Scholar] [CrossRef]
- Bodlák, L.; Krováková, K.; Kobesová, M.; Brom, J.; Stastny, J.; Pecharová, E. SOC content—An appropriate tool for evaluating the soil quality in a reclaimed post-mining landscape. Ecol. Eng. 2012, 43, 53–59. [Google Scholar] [CrossRef]
- Chaudhuri, S.; McDonald, L.M.; Skousen, J.; Pena-Yewtukhiw, E.M. Soil organic carbon molecular properties: Effects of time since reclamation in a minesoil chronosequence. Land Degrad. Dev. 2015, 26, 237–248. [Google Scholar] [CrossRef]
- Monserie, M.F.; Watteau, F.; Villemin, G.; Ouvrard, S.; Morel, J.L. Technosol genesis: Identification of organo-mineral associations in a young Technosol derived from coking plant waste materials. J. Soil Sediment 2009, 9, 537–546. [Google Scholar] [CrossRef]
- Courtney, R.; Mullen, G.; Harrington, T. An Evaluation of revegetation success on bauxite residue. Restor. Ecol. 2009, 17, 350–358. [Google Scholar] [CrossRef]
- Ahirwal, J.; Maiti, S.K.; Singh, A.K. Changes in ecosystem carbon pool and soil CO2 flux following post-mine reclamation in dry tropical environment, India. Sci. Total Environ. 2017, 583, 153–162. [Google Scholar] [CrossRef]
- Ahirwal, J.; Maiti, S.K.; Reddy, M.S. Development of carbon, nitrogen and phosphate stocks of reclaimed coal mine soil within 8 years after forestation with Prosopis juliflora (Sw.) Dc. Catena 2017, 156, 42–50. [Google Scholar] [CrossRef]
- Liu, X.Y.; Bai, Z.K.; Zhou, W.; Cao, Y.G.; Zhang, G.J. Changes in soil properties in the soil profile after mining and reclamation in an opencast coal mine on the Loess Plateau, China. Ecol. Eng. 2017, 98, 228–239. [Google Scholar] [CrossRef]
- Pietrzykowski, M.; Daniels, W.L. Estimation of carbon sequestration by pine (Pinus sylvestris L.) ecosystems developed on reforested post-mining sites in Poland on differing mine soil substrates. Ecol. Eng. 2014, 73, 209–218. [Google Scholar] [CrossRef]
- Singh, A.; Zeng, D.; Chen, F. Effect of young woody plantations on carbon and nutrient accretion rates in a redeveloping soil on coalmine spoil in a dry tropical environment, India. Land Degrad. Dev. 2006, 17, 13–21. [Google Scholar] [CrossRef]
- Šourková, M.; Frouz, J.; Fettweis, U.; Bens, O.; Hüttl, R.; Šantrůčková, H. Soil development and properties of microbial biomass succession in reclaimed post mining sites near Sokolov (Czech Republic) and near Cottbus (Germany). Geoderma 2005, 129, 73–80. [Google Scholar] [CrossRef]
- You, F.; Dalal, R.; Huang, L.B. Initiation of soil formation in weathered sulfidic Cu-Pb-Zn tailings under subtropical and semi-arid climatic conditions. Chemosphere 2018, 204, 318–326. [Google Scholar] [CrossRef]
- Yuan, M.; Xu, Z.P.; Baumgartl, T.; Huang, L. Organic amendment and plant growth improved aggregation in Cu/Pb-Zn tailings. Soil Sci. Soc. Am. J. 2016, 80, 27–37. [Google Scholar] [CrossRef]
- Zhong, X.H.; Zhang, W.J.; Luo, J. The characteristics of the mountain ecosystem and environment in the Gongga Mountain region. Ambio 1999, 28, 648–654. [Google Scholar]
- Das, M.; Maiti, S.K. Comparison between availability of heavy metals in dry and wetland tailing of an abandoned copper tailing pond. Environ. Monit. Assess. 2008, 137, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Calviño, D.; Cutillas-Barreiro, L.; Nóvoa-Muñoz, J.C.; Díaz-Raviña, M.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A.; Arias-Estévez, M.; Rousk, J. Using pine bark and mussel shell amendments to reclaim microbial functions in a Cu polluted acid mine soil. Appl. Soil Ecol. 2018, 127, 102–111. [Google Scholar] [CrossRef]
- Ye, Z.; Shu, W.; Zhang, Z.; Lan, C.; Wong, M. Evaluation of major constraints to revegetation of lead/zinc mine tailings using bioassay techniques. Chemosphere 2002, 47, 1103–1111. [Google Scholar] [CrossRef]
- Huang, L.; Baumgartl, T.; Mulligan, D. Is rhizosphere remediation sufficient for sustainable revegetation of mine tailings? Ann. Bot. 2012, 110, 223–238. [Google Scholar] [CrossRef]
- Mendez, M.O.; Maier, R.M. Phytostabilization of mine tailings in arid and semiarid environments—An emerging remediation technology. Environ. Health Perspect. 2007, 116, 278–283. [Google Scholar] [CrossRef]
- Li, T.Z.; Feng, X.l.; Zhang, H.H.; Tang, G.L.; Wu, Z.B.; Xia, X.B. Geochemical characteristics of the ore-bearing rock series and genesis of the Liwu copper deposit, Sichuan Province. Geol. Explor. 2010, 46, 921–930, (In Chinese with English abstract). [Google Scholar]
- National Soil Survey Office. Soils of China; Chinese Agriculture Press: Beijing, China, 1998; pp. 1–1253. (In Chinese)
- Soil Survey Staff in USDA. Keys to Soil Taxonomy, 12th ed.; USDA—Natural Resources Conservation Service: Washington, DC, USA, 2014; pp. 1–306.
- Maynard, D.G.; Curran, M.P. Soil density measurement in forest soils. In Soil Sampling and Methods of Analysis, 2nd ed.; Cartery, M.R., Gregorich, E.G., Eds.; CRC Press, Boca Raton Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2006; pp. 863–869. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis; Miller, A.L., Keeney, D.R., Eds.; American Society of Agronomy Madison: Madison, WI, USA, 1982; pp. 403–427. [Google Scholar]
- Brookes, P.C.; Powlson, D.S.; Jenkinson, D.S. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem. 1982, 14, 319–329. [Google Scholar] [CrossRef]
- Wu, J.; He, Z.; Wei, W.; O’Donnell, A.G.; Syers, J.K. Quantifying microbial biomass phosphorus in acid soils. Biol. Fertil. Soils 2000, 32, 500–507. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Liptzin, D. C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 2007, 85, 235–252. [Google Scholar] [CrossRef]
- Tian, H.Q.; Chen, G.S.; Zhang, C.; Melillo, J.M.; Hall, C.A.S. Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry 2010, 98, 139–151. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, Y.H.; Prietzel, J.; Bing, H.J.; Yu, D.; Sun, S.Q.; Luo, J.; Sun, H.Y. Changes of soil phosphorus speciation along a 120-year soil chronosequence in the Hailuogou Glacier retreat area (Gongga Mountain, SW China). Geoderma 2013, 195, 251–259. [Google Scholar] [CrossRef]
- Guelland, K.; Hagedorn, F.; Smittenberg, R.H.; Goransson, H.; Bernasconi, S.M.; Hajdas, I.; Kretzschmar, R. Evolution of carbon fluxes during initial soil formation along the forefield of Damma glacier, Switzerland. Biogeochemistry 2013, 113, 545–561. [Google Scholar] [CrossRef]
- Kumar, S.; Maiti, S.K.; Chaudhuri, S. Soil development in 2–21 years old coalmine reclaimed spoil with trees: A case study from Sonepur-Bazari opencast project, Raniganj Coalfield, India. Ecol. Eng. 2015, 84, 311–324. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhao, Z.Q.; Niu, S.Y.; Li, X.Z.; Wang, Y.Y.; Bai, Z.K. Reclamation promotes the succession of the soil and vegetation in opencast coal mine: A case study from Robinia pseudoacacia reclaimed forests, Pingshuo mine, China. Catena 2018, 165, 72–79. [Google Scholar] [CrossRef]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Porder, S.; Houlton, B.Z.; Chadwick, O.A. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecol. Appl. 2010, 20, 5–15. [Google Scholar] [CrossRef]
- Walker, T.W.; Syers, J.K. The fate of phosphorus during pedogenesis. Geoderma 1976, 15, 1–19. [Google Scholar] [CrossRef]
- Crews, T.E.; Kurina, L.M.; Vitousek, P.M. Organic matter and nitrogen accumulation and nitrogen fixation during early ecosystem development in Hawaii. Biogeochemistry 2001, 52, 259–279. [Google Scholar] [CrossRef]
- Zhou, J.; Bing, H.J.; Wu, Y.H.; Yang, Z.J.; Wang, J.P.; Sun, H.Y.; Luo, J.; Liang, J.H. Rapid weathering processes of a 120-year-old chronosequence in the Hailuogou Glacier foreland, Mt. Gongga, SW China. Geoderma 2016, 267, 78–91. [Google Scholar] [CrossRef]
- Wali, M.K. Ecological succession and the rehabilitation of disturbed terrestrial ecosystems. Plant Soil 1999, 213, 195–220. [Google Scholar] [CrossRef]
- Pietrzykowski, M.; Krzaklewski, W. Soil organic matter, C and N accumulation during natural succession and reclamation in an opencast sand quarry (southern Poland). Arch. Agron. Soil Sci. 2007, 53, 473–483. [Google Scholar] [CrossRef]
- Jencks, E.; Tyron, E.; Contri, M. Accumulation of nitrogen in minesoils seeded to black locust 1. Soil Sci. Soc. Am. J. 1982, 46, 1290–1293. [Google Scholar] [CrossRef]
- Recous, S.; Mary, B.; Faurie, G. Microbial immobilization of ammonium and nitrate in cultivated soils. Soil Biol. Biochem. 1990, 22, 913–922. [Google Scholar] [CrossRef]
- Singh, A.N.; Raghubanshi, A.S.; Singh, J.S. Impact of native tree plantations on mine spoil in a dry tropical environment. For. Ecol. Manag. 2004, 187, 49–60. [Google Scholar] [CrossRef]
- Egli, M.; Fitze, P.; Mirabella, A. Weathering and evolution of soils formed on granitic, glacial deposits: Results from chronosequences of Swiss alpine environments. Catena 2001, 45, 19–47. [Google Scholar] [CrossRef]
- Burga, C.A.; Krusi, B.; Egli, M.; Wernli, M.; Elsener, S.; Ziefle, M.; Fischer, T.; Mavris, C. Plant succession and soil development on the foreland of the Morteratsch glacier (Pontresina, Switzerland): Straight forward or chaotic? Flora 2010, 205, 561–576. [Google Scholar] [CrossRef]
- Dümig, A.; Smittenberg, R.; Kogel-Knabner, I. Concurrent evolution of organic and mineral components during initial soil development after retreat of the Damma glacier, Switzerland. Geoderma 2011, 163, 83–94. [Google Scholar] [CrossRef]
- Anderson, J.P.E.; Domsch, K.H. Quantities of plant nutrients in the microbial biomass of selected soils. Soil Sci. 1980, 130, 211–216. [Google Scholar] [CrossRef]
- Azam, F.; Yousaf, M.; Hussain, F.; Malik, K.A. Determination of biomass-N in some agricultural soils of Punjab, Pakistan. Plant Soil 1989, 113, 223–228. [Google Scholar] [CrossRef]
- Yu, Z.Y.; Chen, F.S.; Zeng, D.H.; Zhao, Q.; Chen, G.S. Soil inorganic nitrogen and microbial biomass carbon and nitrogen under pine plantations in zhanggutai sandy soil. Pedosphere 2008, 18, 775–784. [Google Scholar] [CrossRef]
- Asensio, V.; Covelo, E.F.; Kandeler, E. Soil management of copper mine tailing soils—Sludge amendment and tree vegetation could improve biological soil quality. Sci. Total Environ. 2013, 456, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.D.; Ingram, L.J.; Stahl, P.D. Influence of reclamation management practices on microbial biomass carbon and soil organic carbon accumulation in semiarid mined lands of Wyoming. Appl. Soil Ecol. 2008, 40, 387–397. [Google Scholar] [CrossRef]
- Banning, N.C.; Grant, C.D.; Jones, D.L.; Murphy, D.V. Recovery of soil organic matter, organic matter turnover and nitrogen cycling in a post-mining forest rehabilitation chronosequence. Soil Biol. Biochem. 2008, 40, 2021–2031. [Google Scholar] [CrossRef]
Sites/Samples | Depth (cm) | Description | BD (g cm−3) | Sand (%) | Silt | Clay | pH | Vegetation/Climate | Coverage (%) |
---|---|---|---|---|---|---|---|---|---|
Reclaimed site | 0–15 15–30 | Rs, reclaimed soil Rsp, reclaimed spoil | 1.20 1.87 | 56.0 a 70.7 b | 42.0 a 27.9 b | 2.0 a 1.4 b | 5.7 a 4.9 b | Alnus ferdinandi-coburgii (height: 1–2.5 m); Rosa omeiensis f. pteracantha (0.4–0.8 m); Lolium perenne L. | 30–50 |
Undisturbed forest | 0–15 15–30 | Utop, undisturbed top soil Usub, undisturbed subsurface soil | 1.14 1.23 | 49.7 c 40.9 d | 47.3 c 55.8 d | 3.0 c 3.3 c | 5.2 b,c 5.3 c | Alnus ferdinandi-coburgii (height: 2–10 m) | 90–100 |
Initial soil | CKs, top soil used to reclamation | 1.32 | 55.2 a | 42.3 a | 2.5 d | 5.9 a | MAT: 7 °C, MDTR: 16 °C, MaxAT: 21 °C (Jul.) MinAT: −15.6 °C (Jan.) MAP: 802 mm Freeze–thaw: Nov.–Mar. | ||
Initial mine spoil | CKsp | 1.95 | 74.2 b | 25.0 b | 0.8 e | 3.8 d |
No. | Site | Duration (years) | RSOC (g m−2·year−1) | RTN (g m−2·year−1) | MAT (°C) | MAP (mm) | Soil Depth (cm) | Vegetation | Mine Type | Source |
---|---|---|---|---|---|---|---|---|---|---|
Sichuan, SW China | 8 | 65.0 | 7.3 | 7 | 802 | 0–15 | Alnus ferdinandi-coburgii (height: 1–2.5 m); Rosa omeiensis f. pteracantha (0.4–0.8 m); Lolium perenne L. | Copper | This study | |
20.3 | 4.1 | 15–30 | ||||||||
Total | 85.3 | 11.4 | 0–30 | |||||||
1 | Western North Dakota | 45 | 13.1 | 2.5 | 6 | 453 | 0–70 | Bromus inermis, Melilotus spp. | Lignite | [46] |
2A | Singrauli, India | 5 | 16.0 | 1.5 | 23 | 1069 | 0–20 | Tectona grandis L.f | Coal | [18] |
2B | 249 | 4.9 | Albizia lebbeck (L.) Benth. | |||||||
2C | 229 | 11.2 | A. procera (Roxb.) Benth. | |||||||
2D | 324 | 20.0 | Dendrocalamus strictus | |||||||
3 | Southern Poland | 5 | 78.2 | 29.7 | 8 | 700 | 0–20 | Pinus sylvestris L, Betula pendula L. | Sand | [47] |
4A | SE Ohio, USA | 5 | 102 | 11 | 1020 | 0–30 | Pasture | Coal | [8] | |
4B | 10 | 239 | 0–30 | Pasture | ||||||
4C | 10 | 90 | 0–30 | Mixed hardwood species | ||||||
5A | Central Poland | 12 | 520 | 8 | 580 | 0–110 | Lignite | [17] | ||
5B | 17 | 270 | 0–110 | |||||||
6 | Jharkhand, India | 4th to 7th | 171 | 2.0 | 26 | 1375 | 0–30 | Shrub and forest | Coal | [14] |
7 | Telangana, India | 8 | 260 | 22-33 | 975 | 0–60 | Forest with herbs | Coal | [15] | |
8 | West Virginia, USA | 5th to 7th | 22.2 | 19 | 1120 | 0–15 | Robinia pseudoaeacia L. | Coal | [48] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhang, J. Slow Recovery of Major Soil Nutrient Pools during Reclamation in a Sub-Alpine Copper Mine Area, Southeastern Edge of the Tibetan Plateau, Sichuan Province, SW China. Forests 2019, 10, 1069. https://doi.org/10.3390/f10121069
Chen Y, Zhang J. Slow Recovery of Major Soil Nutrient Pools during Reclamation in a Sub-Alpine Copper Mine Area, Southeastern Edge of the Tibetan Plateau, Sichuan Province, SW China. Forests. 2019; 10(12):1069. https://doi.org/10.3390/f10121069
Chicago/Turabian StyleChen, Yang, and Jifei Zhang. 2019. "Slow Recovery of Major Soil Nutrient Pools during Reclamation in a Sub-Alpine Copper Mine Area, Southeastern Edge of the Tibetan Plateau, Sichuan Province, SW China" Forests 10, no. 12: 1069. https://doi.org/10.3390/f10121069
APA StyleChen, Y., & Zhang, J. (2019). Slow Recovery of Major Soil Nutrient Pools during Reclamation in a Sub-Alpine Copper Mine Area, Southeastern Edge of the Tibetan Plateau, Sichuan Province, SW China. Forests, 10(12), 1069. https://doi.org/10.3390/f10121069