# Size–Density Trajectory in Regenerated Maritime Pine Stands after Fire

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

^{2}and 960 plants per 500 m

^{2}(17,000–19,190 plants per ha, respectively), while Calvo et al. [10] refer to average values of 6.53–11.53 seedlings per m

^{2}(65,300–115,300 plants per hectare). Secondly, there is a gap of knowledge about the attainable maximum densities at a given size for young stands. Lastly, there are no scientific-based guidelines supporting the definition of silvicultural prescriptions and thinning decisions of these self-regenerated forests. The management of the self-regenerated pine stands in post-fire conditions is, therefore, a silvicultural challenge.

^{−1}, quadratic mean diameter ($dg$) of 19.7 ± 9.6 cm, and stand age of 38 ± 17 years. The model [28] is incorporated in the stand density management diagram developed for the species, for stands with a minimum average diameter of 10 cm [28]. It is also a basis for the simulation of management scenarios for maritime pine stands 12 years old and older in the ModisPinaster model [29]. Research about the self-thinning line for the species was later presented to pinewoods in France [26] and Spain [21,30].

_{0}) the allometric model developed by reference [28] for the species adequately describes the size–density trajectory for maritime pine at early development stages (mean diameters < 10 cm) versus hypothesis (H

_{a}) a deviance from the straight line occurs at the lower end of the curve. In case of prevailing H

_{a}, the existing self-thinning line needs reevaluation, to account for that deviance.

## 2. Materials and Methods

#### 2.1. Study Area Characteristics

#### 2.2. Supporting Material

^{2}. The plots of S2 were of square shape and have 4 m

^{2}of unit area. For sets 1, 2, and 3, the maximum age of the observed stands does not exceed 20 years.

#### 2.3. Selection of Maximum Values of Size–Density

#### 2.4. Size–Density Relationship Modeling and Statistical Analysis

^{2}adj) and root mean square error (RMSE). The statistical analyses were conducted with JMP

^{®}(v. 10.0) software (Cary, NC, USA) of SAS

^{®}Institute Inc.

## 3. Results

#### 3.1. Representativeness of the Data Set and Pattern of the Density–Size Trajectory

#### 3.2. Maximum Size–Density Sample Data

#### 3.3. Representation of the Size–Density Pattern for the Border Points and Fitted Lines

^{2}adj) for the proposed models was higher than 88%, as shown in Table 3. The VIF value for Equation (2) was equal to or less than 5 (VIF = 3.1), implying that no severe implications of multicollinearity are expected.

#### 3.4. Maximum Size–Density Trajectory over All the Stages of Development

^{−1}), and $dg$ is the quadratic mean diameter over bark (cm) measured at the height level of 1.30 m.

## 4. Discussion

#### 4.1. Representativeness of the Database

^{−1}. This is a wider interval than the ones reported in the literature in concurrent studies [21,26,30].

#### 4.2. Size–Density Trajectory and Self-Thinning Line

^{2}> 0.95), instead of using the straight linear model. The description of the curvature with the three parameters of Equation (2) avoids the use of segment models or piecewise regression models, which require more parameters to estimate.

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Doerr, S.H.; Santin, C. The ‘wildfire problem’: Perceptions and realities in a changing world. Philos. Trans. R. Soc. Lond. B. Biol. Sci.
**2016**, 371, 1–10. [Google Scholar] [CrossRef] [PubMed] - ICNF. I F N 6—Áreas dos Usos do Solo e das Espécies Florestais de Portugal Continental 1995–2005–2010. Resultados Preliminares. 2013. Available online: https://doi.org/10.1016/j.rasd.2006.07.002 (accessed on 11 January 2019).
- Verkerk, P.J.; Martinez de Arano, I.; Palahí, M. The bio-economy as an opportunity to tackle wildfires in Mediterranean forest ecosystems. For. Policy Econ.
**2018**, 86, 1–3. [Google Scholar] [CrossRef] - AFN. FloreStat, 5th National Forest Inventory Information Retrieval Tool; Ministério da Agricultura, do Desenvolvimento Rural e das Pescas: Lisboa, Portugal, 2010; Available online: http://www2.icnf.pt/portal/florestas/ifn/ifn5/rel-fin (accessed on 26 January 2018).
- DR, Resolução do Conselho de Ministros n° 114/2006, Estratégia Nacional Para as Florestas. Diário da República, I Série—n° 179 de 15 de Setembro 2006. Available online: http://www.dre.pt/pdf1s/2006/07/13800/50145029.pdf (accessed on 20 April 2018).
- Fernandes, P.M.; Rigolot, E. The fire ecology and management of maritime pine (Pinus pinaster Ait.). For. Ecol. Manag.
**2007**, 241, 1–13. [Google Scholar] [CrossRef] - Freitas, T.M.D. Avaliação da Biomassa em Regeneraçã de Pinheiro Bravo Pós Fogo; Final Project Report; UTAD: Vila Real, Portugal, 2013; p. 57. [Google Scholar]
- Rodrigues, M.R.C. Análise Multi-Temporal de Crescimento de Espécies Florestais. Criação de um SIG Para a Sua Gestão. Master Thesis, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal, 2008. [Google Scholar]
- Alegria, C.; Pedro, N.; do Carmo Horta, M.; Roque, N.; Fernandez, P. Ecological envelope maps and stand production of eucalyptus plantations and naturally regenerated maritime pine stands in the central inland of Portugal. For. Ecol. Manag.
**2019**, 432, 327–344. [Google Scholar] [CrossRef] - Calvo, L.; Santalla, S.; Valbuena, L.; Marcos, E.; Tárrega, R.; Luis-Calabuig, E. Post-fire natural regeneration of a Pinus pinaster forest in NW Spain. Plant Ecol.
**2008**, 197, 81–90. [Google Scholar] [CrossRef] - Tapias, R.; Climent, J.; Pardos, J.A.; Gil, L. Life histories of Mediterranean pines. Plant. Ecol.
**2004**, 171, 53–68. [Google Scholar] [CrossRef] - Martínez-Sánchez, J.J.; Marin, A.; Herranz, J.P.; Ferrandis, P.; De las Heras, J. Effects of high temperatures on germination of Pinus halepensis Mill. and P. pinaster Aiton subsp, pinaster seeds in southeast Spain. J. Vegetatio
**1995**, 116, 69–72. [Google Scholar] - Moya, D.; Espelta, J.M.; López-Serrano, F.R.; Eugenio, M.; Heras, J.D. Natural post-fire dynamics and serotiny in 10-year-old Pinus halepensis Mill. stands along a geographic gradient. Int. J. Wildl. Fire
**2008**, 17, 287–292. [Google Scholar] [CrossRef] - Maia, P.; Keizer, J.; Vasques, A.; Abrantes, N.; Roxo, L.; Fernandes, P.; Ferreira, A.; Moreira, F. Post-fire plant diversity and abundance in pine and eucalypt stands in Portugal: Effects of biogeography, topography, forest type and post-fire management. For. Ecol. Manag.
**2014**, 334, 154–162. [Google Scholar] [CrossRef] - Zeide, B. Analysis of the 3/2 Power Law of Self-Thinning. For. Sci.
**1987**, 33, 517–537. [Google Scholar] - Reineke, L.H. Perfecting a stand-density index for even-aged forests. J. Agric. Res.
**1933**, 46, 627–638. [Google Scholar] - Yoda, K. Self-thinning in overcrowded pure stands under cultivated and natural conditions (Intraspecific competition among higher plants. XI). J. Inst. Polytech. Osaka City Univ. Ser. D
**1963**, 14, 107–129. [Google Scholar] - Harper, J.L. Population Biology of Plants; Academic Press: Cambridge, MA, USA, 1977; ISBN 9780123258526. [Google Scholar]
- Brunet-Navarro, P.; Sterck, F.J.; Vayreda, J.; Martinez-Vilalta, J.; Mohren, G.M.J. Self-thinning in four pine species: An evaluation of potential climate impacts. Ann. For. Sci.
**2016**, 73, 1025–1034. [Google Scholar] [CrossRef] - Panayotov, M.; Kulakowski, D.; Tsvetanov, N.; Krumm, F.; Berbeito, I.; Bebi, P. Climate extremes during high competition contribute to mortality in unmanaged self-thinning Norway spruce stands in Bulgaria. For. Ecol. Manag.
**2016**, 369, 74–88. [Google Scholar] [CrossRef] - Aguirre, A.; del Río, M.; Condés, S. Intra- and inter-specific variation of the maximum size-density relationship along an aridity gradient in Iberian pinewoods. For. Ecol. Manag.
**2018**, 411, 90–100. [Google Scholar] [CrossRef] - Andrews, C.; Weiskittel, A.; D’Amato, A.W.; Simons-Legaard, E. Variation in the maximum stand density index and its linkage to climate in mixed species forests of the North American Acadian Region. For. Ecol. Manag.
**2018**, 417, 90–102. [Google Scholar] [CrossRef] - Zeide, B. A relationship between size of trees and their number. For. Ecol. Manag.
**1995**, 72, 265–272. [Google Scholar] [CrossRef] - Cao, Q.V.; Dean, T.J.; Baldwin, V.C. Modeling the size-density relationship in direct-seeded Slash pine stands. For. Sci.
**2000**, 46, 317–321. [Google Scholar] - Monserud, R.A.; Ledermann, T.; Sterba, H. Are self-thinning constraints needed in a tree-specific mortality model? For. Sci.
**2005**, 50, 848–858. [Google Scholar] - Charru, M.; Seynave, I.; Morneau, F. Significant differences and curvilinearity in the self-thinning relationships of 11 temperate tree species assessed from forest inventory data. Ann. For. Sci.
**2012**, 69, 195–205. [Google Scholar] [CrossRef] - Fonseca, T.; Monteiro, L.; Enes, T.; Cerveira, A. Self-thinning dynamics in cork oak woodlands: Providing a baseline for managing density. For. Syst.
**2017**, 26, 1–10. [Google Scholar] [CrossRef] - Luis, J.S.; Fonseca, T.F. The allometric model in the stand density management of Pinus pinaster Ait. in Portugal. Ann. For. Sci.
**2004**, 61, 807–814. [Google Scholar] [CrossRef] - Fonseca, T.; Parresol, B.; Marques, C.; de Coligny, F. Models to Implement a Sustainable Forest Management—An Overview of the ModisPinaster Model. In Sustainable Forest Management/Book 1; Martín García, J., Diez Casero, J.J., Eds.; InTech—Open Access Publisher: Rijeka, Croatia, 2012; pp. 321–338. ISBN 978-953-51-0621-0. [Google Scholar]
- Riofrío, J.; Del Río, M.; Bravo, F. Mixing effects on growth efficiency in mixed pine forests. Forestry
**2017**, 90, 381–392. [Google Scholar] [CrossRef] - Rivas-Martinez, S.; Fernández-González, F.; Loidi, J.; Lousa, M.; Penas, A. Vascular plant communities of Spain and Portugal. Addenda to the syntaxonomical checklist of 2001. Part II. In Itinera Geobotanica; Leon, Spain, 2002; Volume 15, ISSN 0213-8530. Available online: https://webs.ucm.es/info/cif/book/addenda/addenda1_00.htm (accessed on 13 November 2018).
- SNIRH. Sistema Nacional de Informação de Recursos Hídricos. Available online: http://www.snirh.pt (accessed on 13 November 2018).
- Marques, C.P. Evaluating site quality of even-aged maritime pine stands in northern Portugal using direct and indirect methods. For. Ecol. Manag.
**1991**, 41, 193–204. [Google Scholar] [CrossRef] - Fonseca, T.J.F. Modelação do Crescimento, Mortalidade e Distribuição Diamétrica, do Pinhal Bravo no Vale do Tâmega. Ph.D. Thesis, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal, 2004. [Google Scholar]
- Keeney, R.; Raiffa, H.; Rajala, D. Decisions with Multiple Objectives: Preferences and Value Trade-Offs. Syst. Man Cybern. IEEE Trans.
**1979**, 9, 403. [Google Scholar] [CrossRef] - Neter, J.; Kutner, M.; Nachtsheim, C.; Wassermaniption, W. Applied Linear Statistical Models, 3rd ed.; Irwin: Chicago, IL, USA, 1996. [Google Scholar]
- Myers, R.H. Classical and Modern Regression with Applications; Duxbury advanced series in statistics and decision sciences; PWS-KENT: Belmont, CA, USA, 1990; ISBN 9780534922412. [Google Scholar]
- Ningre, F.; Ottorini, J.M.; Le Goff, N. Modeling size-density trajectories for even-aged beech (Fagus silvatica L.) stands in France. Ann. For. Sci.
**2016**, 73, 765–776. [Google Scholar] [CrossRef] - Zhang, X.; Cao, Q.V.; Duan, A.; Zhang, J. Self-thinning trajectories of Chinese fir plantations in Southern China. For. Sci.
**2016**, 62, 594–599. [Google Scholar] [CrossRef] - Ningre, F.; Ottorini, J.-M.; Le Goff, N. Size-density trajectories for even-aged sessile oak (Quercus petraea (Matt.) Liebl.) and common beech (Fagus sylvatica L.) stands revealing similarities and differences in the mortality process. Ann. For. Sci.
**2019**, 76, 73. [Google Scholar] [CrossRef] - Lauer, C.J.; Montgomery, C.A.; Dietterich, T.G. Spatial interactions and optimal forest management on a fire-threatened landscape. For. Policy Econ.
**2017**, 83, 107–120. [Google Scholar] [CrossRef] - Fonseca, T.F.; Duarte, J.C. A silvicultural stand density model to control understory in maritime pine stands. iForest
**2017**, 10, 829–836. [Google Scholar] [CrossRef] - Fernandes, P.M. Fire-smart management of forest landscapes in the Mediterranean basin under global change. Landsc. Urban. Plan.
**2013**, 110, 175–182. [Google Scholar] [CrossRef] [Green Version]

**Figure 2.**Diagram of dispersion and relationship between the logarithm of N (trees.ha

^{−1}) and the logarithm of quadratic mean diameter (dg (cm)), for the observations of the four data subsets. Two lines are imposed: the estimated maximum size–density values according to the allometric model by Luis and Fonseca [28] (L & F), and a hypothesized line (hand-drawn, dashed) placed close to the extreme pairs of (dg, N) values registered for the young stands. The shaded area represents the domain region of the L & F model, for the diameter variable.

**Figure 3.**Diagram of dispersion and relationship between the logarithm of N (trees.ha

^{−1}) and the logarithm of dg (cm) for the dataset of 30 border points. The straight line corresponds to the fitted linear model (Equation (1)) and the curve to the quadratic model (Equation (2)).

**Figure 4.**Plots of the residuals for the fitted linear model (Equation (1)) and the quadratic model (Equation (2)).

**Table 1.**Summary characteristics of the number of trees per hectare (N) and quadratic mean diameter (dg) for the sampled plots of maritime pine.

Source | n | N (trees.ha^{−1}) | dg (cm) | ||||||
---|---|---|---|---|---|---|---|---|---|

Min | Mean | Max | sd | Min | Mean | Max | sd | ||

S1 | 4 | 1560 | 3985 | 7500 | 2708 | 7.5 | 9.8 | 11.2 | 1.6 |

S2 | 59 | 1500 | 9536 | 32,500 | 8549 | 0.2 | 4.0 | 9.9 | 2.6 |

S3 | 153 | 50 | 3091 | 90,000 | 8460 | 0.1 | 8.0 | 27.5 | 8.0 |

S4 | 25 | 110 | 1724 | 7680 | 1705 | 6.8 | 27.2 | 53.3 | 12.0 |

^{−1}); dg—quadratic mean diameter measured at the height level of 1.30 m; Min—data minimum; Mean—data average; Max—data maximum; and sd—data standard deviation.

Source | n | N (trees.ha^{−1}) | dg (cm) | ||||||
---|---|---|---|---|---|---|---|---|---|

Min | Mean | Max | sd | Min | Mean | Max | sd | ||

Border points | 30 | 110 | 7121 | 90,000 | 17,366 | 0.5 | 23.3 | 53.3 | 14.1 |

^{−1}); dg—quadratic mean diameter measured at the height level of 1.30 m; Min—data minimum; Mean—data average; Max—data maximum; and sd—data standard deviation.

**Table 3.**Coefficients (standard errors) and fit statistics of the estimated models to support the definition of the maximum size–density trajectory for maritime pine (n = 30 observations). RMSE: root mean square error.

Model (Equation) | Estimates (Stand Error) | Fit Statistics | ||||
---|---|---|---|---|---|---|

Intercept | r | s | $\overline{\mathbf{l}\mathbf{n}\mathit{d}\mathit{g}}$ | R^{2}_{adj} | RMSE | |

Equation (1) | 11.115 (0.270) | −1.290 (0.090) | - | - | 0.876 | 0.541 |

Equation (2) | 12.969 (0.328) | −1.832 (0.100) | −0.280 (0.042) | 2.796 | 0.954 | 0.341 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Enes, T.; Lousada, J.; Aranha, J.; Cerveira, A.; Alegria, C.; Fonseca, T.
Size–Density Trajectory in Regenerated Maritime Pine Stands after Fire. *Forests* **2019**, *10*, 1057.
https://doi.org/10.3390/f10121057

**AMA Style**

Enes T, Lousada J, Aranha J, Cerveira A, Alegria C, Fonseca T.
Size–Density Trajectory in Regenerated Maritime Pine Stands after Fire. *Forests*. 2019; 10(12):1057.
https://doi.org/10.3390/f10121057

**Chicago/Turabian Style**

Enes, Teresa, José Lousada, José Aranha, Adelaide Cerveira, Cristina Alegria, and Teresa Fonseca.
2019. "Size–Density Trajectory in Regenerated Maritime Pine Stands after Fire" *Forests* 10, no. 12: 1057.
https://doi.org/10.3390/f10121057