Next Article in Journal
The Soil Microbiome of the Laurel Forest in Garajonay National Park (La Gomera, Canary Islands): Comparing Unburned and Burned Habitats after a Wildfire
Previous Article in Journal
Facial Expressions of Visitors in Forests along the Urbanization Gradient: What Can We Learn from Selfies on Social Networking Services?
Open AccessArticle

Developing Allometric Equations for Teak Plantations Located in the Coastal Region of Ecuador from Terrestrial Laser Scanning Data

1
Department of Engineering, University of Almería, Ctra. de Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
2
Faculty of Technical Education for Development, Santiago de Guayaquil Catholic University, Av. Carlos Julio Arosamena, Guayaquil 090615, Ecuador
*
Author to whom correspondence should be addressed.
Forests 2019, 10(12), 1050; https://doi.org/10.3390/f10121050
Received: 1 October 2019 / Revised: 7 November 2019 / Accepted: 18 November 2019 / Published: 20 November 2019
(This article belongs to the Section Forest Inventory, Quantitative Methods and Remote Sensing)
Traditional studies aimed at developing allometric models to estimate dry above-ground biomass (AGB) and other tree-level variables, such as tree stem commercial volume (TSCV) or tree stem volume (TSV), usually involves cutting down the trees. Although this method has low uncertainty, it is quite costly and inefficient since it requires a very time-consuming field work. In order to assist in data collection and processing, remote sensing is allowing the application of non-destructive sampling methods such as that based on terrestrial laser scanning (TLS). In this work, TLS-derived point clouds were used to digitally reconstruct the tree stem of a set of teak trees (Tectona grandis Linn. F.) from 58 circular reference plots of 18 m radius belonging to three different plantations located in the Coastal Region of Ecuador. After manually selecting the appropriate trees from the entire sample, semi-automatic data processing was performed to provide measurements of TSCV and TSV, together with estimates of AGB values at tree level. These observed values were used to develop allometric models, based on diameter at breast height (DBH), total tree height (h), or the metric DBH2 × h, by applying a robust regression method to remove likely outliers. Results showed that the developed allometric models performed reasonably well, especially those based on the metric DBH2 × h, providing low bias estimates and relative RMSE values of 21.60% and 16.41% for TSCV and TSV, respectively. Allometric models only based on tree height were derived from replacing DBH by h in the expression DBH2 x h, according to adjusted expressions depending on DBH classes (ranges of DBH). This finding can facilitate the obtaining of variables such as AGB (carbon stock) and commercial volume of wood over teak plantations in the Coastal Region of Ecuador from only knowing the tree height, constituting a promising method to address large-scale teak plantations monitoring from the canopy height models derived from digital aerial stereophotogrammetry. View Full-Text
Keywords: tropical dry forests; teak plantations; terrestrial laser scanning; height-diameter allometry, stem volume; forest inventory tropical dry forests; teak plantations; terrestrial laser scanning; height-diameter allometry, stem volume; forest inventory
Show Figures

Figure 1

MDPI and ACS Style

Aguilar, F.J.; Nemmaoui, A.; Peñalver, A.; Rivas, J.R.; Aguilar, M.A. Developing Allometric Equations for Teak Plantations Located in the Coastal Region of Ecuador from Terrestrial Laser Scanning Data. Forests 2019, 10, 1050.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop