The Bioenergetic Potential of Four Oak Species from Northeastern Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Preparation and Characterization of Biomass
2.3. Granulometric Distribution and Bulk Density
2.4. Immediate Analysis
2.5. Calorific Value
2.6. Statistical Analysis
3. Results
3.1. Granulometry
3.2. Bulk Density
3.3. Moisture Content
3.4. Volatile Matter
3.5. Ash Content
3.6. Fixed Carbon
3.7. Calorific Value
4. Discussion
4.1. Physical Properties
4.2. Immediate Analysis
4.3. Calorific Value
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Demirbas, M.F.; Balat, M.; Balat, H. Potential contribution of biomass to the sustainable energy development. Energy Convers. Manag. 2009, 50, 1746–1760. [Google Scholar] [CrossRef]
- Miranda, T.; Montero, I.; Sepúlveda, F.J.; Arranz, J.I.; Rojas, C.V.; Nogales, S. A review of pellets from different sources. Materials (Basel) 2015, 8, 1413–1427. [Google Scholar] [CrossRef] [PubMed]
- Telmo, C.; Lousada, J. Heating values of wood pellets from different species. Biomass Bioenergy 2011, 35, 2634–2639. [Google Scholar] [CrossRef]
- Pradhan, P.; Mahajani, S.M.; Arora, A. Production and utilization of fuel pellets from biomass: A review. Fuel Process. Technol. 2018, 181, 215–232. [Google Scholar] [CrossRef]
- Nguyen, Q.N.; Cloutier, A.; Achim, A.; Stevanovic, T. Effect of process parameters and raw material characteristics on physical and mechanical properties of wood pellets made from sugar maple particles. Biomass Bioenergy 2015, 80, 338–349. [Google Scholar] [CrossRef]
- García-Maraver, A.; Rodríguez, M.L.; Serrano-Bernardo, F.; Diaz, L.F.; Zamorano, M. Factors affecting the quality of pellets made from residual biomass of olive trees. Fuel Process. Technol. 2015, 129, 1–7. [Google Scholar] [CrossRef]
- IEA Bioenergy, Task 40 Report, Global Wood Pellet Industry and Trade Study. Available online: http://task40.ieabioenergy.com/wp-content/uploads/2013/09/IEA-Wood-Pellet-Study_final-2017-06.pdf (accessed on 7 July 2019).
- Zeymer, M.; Meisel, K.; Clemens, A.; Klemm, M. Techcnical, Economic, and Environmental Assessment of the Hydrothermal Carbonization of Green Waste. Chem. Eng. Technol. 2017, 2, 260–269. [Google Scholar] [CrossRef]
- Tenorio, C.; Moya, R.; Valaert, J. Characterization of pellets made from oil palm residues in Costa Rica. J. Oil Palm Res. 2016, 28, 198–210. [Google Scholar] [CrossRef]
- Tharakan, P.J.; Volk, T.A.; Abrahamson, L.P.; White, E.H. Energy feedstock characteristics of willow and hybrid poplar clones at harvest age. Biomass Bioenergy 2003, 25, 571–580. [Google Scholar] [CrossRef]
- Viana, H.; Vega-Nieva, D.J.; Ortiz Torres, L.; Lousada, J.; Aranha, J. Fuel characterization and biomass combustion properties of selected native woody shrub species from central Portugal and NW Spain. Fuel 2012, 102, 737–745. [Google Scholar] [CrossRef]
- Viana, H.; Rodrigues, A.; Lopes, D.M.M.; Godina, R.; Nunes, L.J.R.; Matias, J.C.O. Pinus pinaster and Eucalyptus globulus Energetic Properties and Ash Characterization. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy, 12–15 June 2018; pp. 1–4. [Google Scholar]
- Lestander, T.A.; Lindström, A.; Finell, M. Assessment of biomass functions for calculating bark proportions and ash contents of refined biomass fuels derived from major boreal tree species. Can. J. For. Res. 2012, 42, 59–66. [Google Scholar] [CrossRef]
- Lerma-Arce, V.; Oliver-Villanueva, J.V.; Segura-Orenga, G. Influence of raw material composition of Mediterranean pinewood on pellet quality. Biomass Bioenergy 2017, 99, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Maraver, A.; Carpio, M. Factors Affecting Pellet Quality. In Biomass Pelletization Standards and Production, 1st ed.; Garcia-Maraver, A., Pérez-Jiménez, J.A., Eds.; WIT Press: Southampton, UK, 2015; Volume 85, pp. 21–25. [Google Scholar]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G.; Morgan, T.J. An overview of the organic and inorganic phase composition of biomass. Fuel 2012, 94, 1–33. [Google Scholar] [CrossRef]
- Viana, H.F.; Martins Rodrigues, A.; Godina, R.; Carlos de Oliveira Matias, J.; Jorge Ribeiro Nunes, L. Evaluation of the Physical, Chemical and Thermal Properties of Portuguese Maritime Pine Biomass. Sustainability 2018, 10, 2877. [Google Scholar] [CrossRef]
- Sgarbossa, A.; Costa, C.; Menesatti, P.; Antonucci, F.; Pallotino, F.; Zanetti, M.; Grigolato, S.; Cavalli, R. Colorimetric patterns of wood pellets and their relations with quality and energy parameters. Fuel 2014, 137, 70–76. [Google Scholar] [CrossRef]
- Garcia-Maraver, A.; Popov, V.; Zamorano, M. A review of European standards for pellet quality. Renew. Energy 2011, 36, 3537–3540. [Google Scholar] [CrossRef]
- Asociación Española de Normalización y Certificación. Especificaciones y Clases de Combustibles Parte 1: Requisitos Generales; UNE-EN 14961-1:2011; Asociación Española de Normalización y Certificación (AENOR): Madrid, Spain, 2011. [Google Scholar]
- CSA Group—www.csagroup.org for the CAN/CSA-ISO 17225 Solid Biofuel, Fuel Specification and Classes–Part 1 General Reuirments and Part 2 Graded Wood Pellets; CSA Group: Toronto, ON, Canada, 2014.
- Lima-Rojas, L. Evaluación de la Composición Química y Propiedades Físicas de la Madera y Corteza de Cuatro Coníferas Para la Producción de Bioenergía. Ph.D. Thesis, Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales, Linares, México, January 2013. [Google Scholar]
- Obernberger, I.; Thek, G. Physical characterization and chemical composition of densified biomass fuels with regard to their combustion behavior. Biomass Bioenergy 2004, 27, 653–669. [Google Scholar] [CrossRef]
- Öhman, M.; Boman, C.; Hedman, H.; Nordin, A.; Bostrom, D. Slagging tendencies of wood pellet ash during combustion in residential pellet burners. Biomass Bioenergy 2004, 27, 585–596. [Google Scholar] [CrossRef]
- Mani, S.; Tabil, L.G.; Sokhansanj, S. Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenergy 2006, 30, 648–654. [Google Scholar] [CrossRef]
- Shaw, M.D.; Karunakaran, C.; Tabil, L.G. Physicochemical characteristics of densified untreated and steam exploded poplar wood and wheat straw grinds. Biosyst. Eng. 2009, 103, 198–207. [Google Scholar] [CrossRef]
- Theerarattananoon, K.; Xu, F.; Wilson, J.; Ballard, R.; Mckinney, L.; Staggenborg, S.; Vadlani, P.; Pei, Z.J.; Wang, D. Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem. Ind. Crop. Prod. 2011, 33, 325–332. [Google Scholar] [CrossRef]
- Zamorano, M.; Popov, V.; Rodríguez, M.L.; García-Maraver, A. A comparative study of quality properties of pelletized agricultural and forestry lopping residues. Renew. Energy 2011, 36, 3133–3140. [Google Scholar] [CrossRef]
- Lehtikangas, P. Quality properties of pelletised sawdust, logging residues and bark. Biomass Bioenergy 2001, 20, 351–360. [Google Scholar] [CrossRef]
- Okuda, N.; Sato, M. Manufacture and mechanical properties of binderless boards from kenaf core. J. Wood Sci. 2004, 50, 53–61. [Google Scholar] [CrossRef]
- Bergström, D.; Israelsson, S.; Öhman, M.; Dahlqvist, S.A.; Gref, R.; Boman, C.; Wästerlund, I. Effects of raw material particle size distribution on the characteristics of Scots pine sawdust fuel pellets. Fuel Process Technol. 2008, 89, 1324–1329. [Google Scholar] [CrossRef]
- Esteban, I.; Mediavilla, M.; Fernández Carrasco, J. Influence of the size reduction of pine logging residues on the pelleting process and on the physical properties of pellets obtained. In Proceedings of the 2nd World Conference on Pellets, Jönköping, Sweden, 30 May–1 June 2006; pp. 19–23. [Google Scholar]
- Kaliyan, N.; Morey, R.V. Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 2009, 33, 337–359. [Google Scholar] [CrossRef]
- Castellano, J.M.; Gómez, M.; Fernández, M.; Esteban, L.S.; Carrasco, J.E. Study on the effects of raw materials composition and pelletization conditions on the quality and properties of pellets obtained from different woody and non woody biomasses. Fuel 2015, 139, 629–636. [Google Scholar] [CrossRef]
- Harun, N.Y.; Afzal, M.T. Effect of Particle Size on Mechanical Properties of Pellets Made from Biomass Blends. Procedia Eng. 2016, 148, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Muramatsu, K.; Massuquetto, A.; Dahlke, F.; Maiorka, A. Factors that Affect Pellet Quality: A Review. J. Agric. Sci. Technol. 2015, 5, 717–722. [Google Scholar] [CrossRef]
- Filbakk, T.; Jirjis, R.; Nurmi, J.; Høibø, O. The effect of bark content on quality parameters of Scots pine (Pinus sylvestris L.) pellets. Biomass Bioenergy 2011, 35, 3342–3349. [Google Scholar] [CrossRef]
- Wehenkel, C.; Cruz-Cobos, F.; Carrillo, A.; Lujan-Soto, J.E. Estimating bark volumes for 16 native tree Species on the Sierra Madre Occidental, Mexico. Scand. J. For. Res. 2012, 1–8. [Google Scholar] [CrossRef]
- Rezaei, H.; Sokhansanj, S. Physical and thermal characterization of ground bark and ground wood particles. Renew. Energy 2018, 129, 583–590. [Google Scholar] [CrossRef]
- Miranda, M.T.; Arranz, J.I.; Rojas, S.I.; Montero, I. Energetic characterization of densified residues from Pyrenean oak forest. Fuel 2009, 88, 2106–2112. [Google Scholar] [CrossRef]
- Qin, X.; Keefe, R.F.; Daugaard, D.E. Small Landowner Production of Pellets from Green, Beetle-Killed, and Burned Lodgepole Pine. Energies 2018, 11, 648. [Google Scholar] [CrossRef]
- Lehtikangas, P. Storage effects on pelletised sawdust, logging residues and bark. Biomass Bioenergy 2000, 19, 287–293. [Google Scholar] [CrossRef]
- Rhén, C.; Öhman, M.; Gref, R.; Wästerlund, I. Effect of raw material composition in woody biomass pellets on combustion characteristics. Biomass Bioenergy 2007, 31, 66–72. [Google Scholar] [CrossRef]
- Fernández-Puratich, H.; Oliver-Villanueva, V.; Valiente, M.; Verdú, S.; Albert, N. Desarrollo de pellets a partir de tres especies leñosas bajo condiciones mediterraneas. Madera y Bosques 2014, 20, 97–111. [Google Scholar] [CrossRef]
- Relova, I.; Vignote, S.; León, M.A.; Ambrosio, Y. Optimisation of the manufacturing variables of sawdust pellets from the bark of Pinus caribea Morelet: Particle size, moisture and pressure. Biomass Bioenergy 2009, 33, 1351–1357. [Google Scholar] [CrossRef]
- Correa-Méndez, F.; Carrillo-Parra, A.; Rutiaga-Quiñones, J.G.; Jurado, E. Granulometric distribution in timber byproducts for potential use in pellets and briquettes. Rev. Mex. Ciencias For. 2014, 5, 52–63. [Google Scholar]
- Silva-Guzmán, J.A.; Ramírez-Arango, A.M.; Fuentes-Talavera, F.J.; Rodríguez-Anda, R.; Turrado-Saucedo, J.; Richter, H.G. A diagnosis of the primary transformation industry of the tropical woods of Mexico. Rev. Mex. Cienc. For. 2014, 6, 202–221. [Google Scholar]
- Villela-Suárez, J.M. Aprovechamiento Forestal Para Propósitos Bioenergéticos en la Región de El Salto, Durango. Ph.D. Thesis, Universidad Autonoma de Nuevo León, Facultad de Ciencias Forestales, Linares, México, December 2015. [Google Scholar]
- García, C.A.; Riegelhaupt, E.; Ghilardi, A.; Skutsch, M.; Islas, J.; Manzini, F.; Masera, O. Sustainable bioenergy options for Mexico: GHG mitigation and costs. Renew. Sustain. Energy Rev. 2015, 43, 545–552. [Google Scholar] [CrossRef]
- Tauro, R.; García, C.A.; Skutsch, M.; Masera, O. The potential for sustainable biomass pellets in Mexico: An analysis of energy potential, logistic costs and market demand. Renew. Sustain. Energy Rev. 2018, 82, 380–389. [Google Scholar] [CrossRef]
- Sosa-Ramírez, J.; Moreno-Rico, O.; Sanchez-Martínez, G.; Siqueiros-Delgado, M.A.; Díaz-Núñez, V. Ecología y fitosanidad de los encinos (Quercus spp.) en la Sierra Fría, Aguascalientes, México. Madera y Bosques 2011, 17, 49–63. [Google Scholar] [CrossRef]
- Pérez-Olvera, C.P.; Dávalos-Sotelo, R.; Guerrero-Cuacuil, E. Aprovechamiento de la madera de encino en México. Madera y Bosques 2000, 6, 3–13. [Google Scholar] [CrossRef]
- Bárcenas-Pazos, G.M.; Ríos-Villa, R.; Juárez-Flores, B.I.; Honorato-Salazar, J.A. Chemical composition and relative basic density of two shrub white oak wood species from the Sierra de Álvarez, SLP, Mexico. Madera y Bosques 2008, 14, 81–94. [Google Scholar] [CrossRef]
- Asociación Española de Normalización y Certificación. Determinación de la Distribución de Tamaño de Partícula Para Combustibles sin Comprimir-Parte 2: Método del Tamiz Vibratorio con Abertura de Malla Inferior o Igual a 3.12 mm; UNE-EN 17827-2:2016; Asociación Española de Normalización y Certificación (AENOR): Madrid, Spain, 2016. [Google Scholar]
- Asociación Española de Normalización y Certificación. Determinación de la Densidad a Granel; UNE-EN 17828:2016; Asociación Española de Normalización y Certificación (AENOR): Madrid, Spain, 2016. [Google Scholar]
- Asociación Española de Normalización y Certificación. Determinación del Contenido de Humedad, Método de Secado en Estufa-Parte 3: Humedad de la Muestra Para Análisis General; UNE-EN 18134-3:2016; Asociación Española de Normalización y Certificación (AENOR): Madrid, Spain, 2016. [Google Scholar]
- Asociación Española de Normalización y Certificación. Determinación del Contenido en Materia Volátil; UNE-EN 18123:2016; Asociación Española de Normalización y Certificación (AENOR): Madrid, Spain, 2016. [Google Scholar]
- Asociación Española de Normalización y Certificación. Determinación del Contenido de Ceniza; UNE-EN 18122:2016; Asociación Española de Normalización y Certificación (AENOR): Madrid, Spain, 2016. [Google Scholar]
- Carrillo-Parra, A.; Ngangyo, H.M.; Colín-Urieta, S.; Foroughbakhch, P.R.; Rutiaga-Quiñones, J.G.; Correa-Méndez, F. Physical, mechanical and energy characterization of wood pellets obtained from three common tropical species. PeerJ 2018, 6, e5504. [Google Scholar] [CrossRef] [Green Version]
- Asociación Española de Normalización y Certificación. Determinación del Poder Calorífico; UNE-EN 14918:2011; Asociación Española de Normalización y Certificación (AENOR): Madrid, Spain, 2016. [Google Scholar]
- R Studio Version 2.13.1; The R Foundation for Statistical Computing: Vienna, Austria, 2011; ISBN 3-900051-07-0. Available online: http://www.r-project (accessed on 20 January 2019).
- Santiago-Hansted, A.L.; Tami, G.; Provedel, M.; Yamamoto, H.; Minoru, F. Comparative analyses of fast growing species in different moisture content for high quality solid fuel production. Fuel 2016, 184, 180–184. [Google Scholar] [CrossRef]
- Miranda, M.T.; Arranz, J.I.; Román, S.; Rojas, S.; Montero, I.; López, M.; Cruz, J.A. Characterization of grape pomace and pyrenean oak pellets. Fuel Process. Technol. 2011, 92, 278–283. [Google Scholar] [CrossRef]
- Holm, J.K.; Henriksen, U.B.; Hustad, J.E.; Sørensen, L.H. Toward an Understanding of Controlling Parameters in Softwood and Hardwood Pellets Production. Energy Fuels 2006, 20, 269–2686. [Google Scholar] [CrossRef]
- Obernberger, I.; Thek, G. The Pellet Handbook; Bios Bioenergiesysteme GmbH: London, UK, 2010; p. 549. [Google Scholar]
- Franke, M.; Rey, A. Pelleting Quality. World Grain 2006; University of Georgia: Athens, GA, USA, 2006; Volume 4, pp. 78–79. [Google Scholar]
- Miranda, I.; Gominho, J.; Mirra, I.; Pereira, H. Chemical characterization of barks from Picea abies and Pinus sylvestris after fractioning into different particle sizes. Ind. Crop. Prod. 2012, 36, 395–400. [Google Scholar] [CrossRef]
- Tumuluru, J.S. Effect of process variables on the density and durability of the pellets made from high moisture corn stover. Biosyst. Eng. 2014, 119, 44–57. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Mi, B.; Jiang, Z.; Fei, B.; Cai, Z. Improved bulk density of bamboo pellets as biomass for energy production. Renew. Energy 2016, 86, 1–7. [Google Scholar] [CrossRef]
- Stasiak, M.; Molenda, M.; Ba, M.; Wi, J.; Para, P.; Gondek, E. Mechanical and combustion properties of sawdust-straw pellets blended in different proportions. Fuel Process. Technol. 2017, 156, 366–375. [Google Scholar] [CrossRef]
- Şen, A.; Quilhó, T.; Pereira, H. Bark anatomy of Quercus cerris L. var. cerris from Turkey. Turk. J. Bot. 2011, 35, 45–55. [Google Scholar] [CrossRef]
- Baptista, I.; Miranda, I.; Quilhó, T.; Gominho, J.; Pereira, H. Characterisation and fractioning of Tectona grandis bark in view of its valorisation as a biorefinery raw-material. Ind. Crop. Prod. 2013, 50, 166–175. [Google Scholar] [CrossRef]
- Miranda, J.; Gominho, J.; Mirra, I.; Pereira, H. Fractioning and chemical characterization of barks of Betula pendula and Eucalyptus globulus. Ind. Crop. Prod. 2013, 41, 299–305. [Google Scholar] [CrossRef]
- Ferreira, J.P.A.; Miranda, I.; Gominho, J.; Pereira, H. Selective fractioning of Pseudotsuga menziesii bark and chemical characterization in view of an integrated valorization. Ind. Crop. Prod. 2015, 74, 998–1007. [Google Scholar] [CrossRef]
- Sette, C.R.; Santiago-Hansted, A.L.; Novaes, E.; Fonseca-Lima, P.A.; Claudia-Rodrigues, A.; Sousa-Santos, D.; Minoru, F. Energy enhancement of the eucalyptus bark by briquette production. Ind. Crop. Prod. 2018, 122, 209–213. [Google Scholar] [CrossRef]
- Lam, P.S.; Sokhansanj, S.; Bi, X.; Lim, C.J.; Naimi, L.J.; Hoque, M.; Mani, S.; Womac, A.R.; Ye, X.P.; Narayan, S. Bulk density of wet and dry wheat straw and switchgrass particles. Appl. Eng. Agric. 2008, 24, 351–358. [Google Scholar] [CrossRef]
- Agar, D.A.; Rudolfsson, M.; Kalén, G.; Campargue, M.; Da Silva, D.; Larsson, S.H. A systematic study of ring-die pellet production from forest and agricultural biomass. Fuel Process. Technol. 2018, 180, 47–55. [Google Scholar] [CrossRef]
- Whittaker, C.; Shield, I. Factors affecting wood, energy grass and straw pellet durability—A review. Renew. Sustain. Energy Rev. 2017, 71, 1–11. [Google Scholar] [CrossRef]
- Arshadi, M.; Gref, R.; Geladi, P.; Dahlqvist, S.A.; Lestander, T. The influence of raw material characteristics on the industrial pelletizing process and pellet quality. Fuel Process. Technol. 2008, 89, 1442–1447. [Google Scholar] [CrossRef]
- Amirta, R.; Anwar, T.; Sudrajat, Y.; Suwinarti, W. Trial production of fuel pellet from Acacia mangium bark waste biomass. IOP Conf. Ser. Earth Environ. Sci. 2018, 144. [Google Scholar] [CrossRef]
- Gil, M.V.; Oulego, P.; Casal, M.D.; Pevida, C.; Pis, J.J.; Rubiera, F. Mechanical durability and combustion characteristics of pellets from biomass blends. Bioresour. Technol. 2010, 101, 8859–8867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holubcik, M.; Jandacka, J.; Durcansky, P. Energy properties of wood pellets made from the unusual woody plants. AIP Conf. Proc. 2016, 1768. [Google Scholar] [CrossRef]
- Tabakaev, R.; Shanenkov, I.; Kazakov, A.; Zavorin, A. Thermal processing of biomass into high-calorific solid composite fuel. J. Anal. Appl. Pyrolysis 2017, 124, 94–102. [Google Scholar] [CrossRef]
- Forero-Nuñez, C.A.; Jochum, J.; Sierra, F.E. Effect of particle size and addition of cocoa pod husk on the properties of sawdust and coal pellets. Ing. Investig. 2015, 35, 17–23. [Google Scholar] [CrossRef]
- Demirbas, A. Relationships between lignin contents and fixed carbon contents of biomass samples. Energy Convers. Manag. 2003, 44, 1481–1486. [Google Scholar] [CrossRef]
- Feng, S.; Cheng, S.; Yuan, Z.; Leitch, M.; Charles, C. Valorization of bark for chemicals and materials: A review. Renew. Sustain. Energy Rev. 2013, 26, 560–578. [Google Scholar] [CrossRef]
- Branca, C.; Iannace, A.; Di Blasi, C. Devolatilization and Combustion Kinetics of Quercus cerris Bark. Energy Fuels 2007, 21, 1078–1084. [Google Scholar] [CrossRef]
- Lisowski, A.; Dąbrowska-Salwin, M.; Ostrowska-Ligęza, E.; Nawrocka, A.; Stasiak, M.; Świętochowski, A.; Klonowski, J.; Sypuła, M.; Lisowska, B. Effects of the biomass moisture content and pelleting temperature on the pressure-induced agglomeration process. Biomass Bioenergy 2017, 107, 376–383. [Google Scholar] [CrossRef]
- García, R.; González-Vázquez, M.P.; Pevida, C.; Rubiera, F. Pelletization properties of raw and torrefied pine sawdust: Effect of co-pelletization, temperature, moisture content and glycerol addition. Fuel 2018, 215, 290–297. [Google Scholar] [CrossRef]
- Graham, S.; Ogunfayo, I.; Hall, M.R.; Snape, C.; Quick, W.; Weathersone, S.; Esatwick, C. Changes in mechanical properties of wood pellets during arti fi cial degradation in a laboratory environment. Fuel Process. Technol. 2016, 148, 395–402. [Google Scholar] [CrossRef]
- Asociación Española de Normalización y Certificación. Especificaciones y Clases de Combustibles—Parte 2: Pélets de Madera Para Uso No Industrial; UNE-EN 14961-2:2012; Asociación Española de Normalización y Certificación (AENOR): Madrid, Spain, 2012. [Google Scholar]
- Rutiaga Quiñones, J.G.; Weiderpass, E.; Strobel, C. Composición química del duramen de la madera de Quercus candicans Neé. Madera y Bosques 2000, 6, 73–80. [Google Scholar] [CrossRef]
- Ruiz-Aquino, F.; Gonzalez-Peña, M.M.; Valdez-Hernandez, J.I.; Revilla, U.S. Romero-Manzanares, A. Chemical characterization and fuel properties of wood and bark of two oaks from Oaxaca, Mexico. Ind. Crop. Prod. 2015, 65, 90–95. [Google Scholar] [CrossRef]
- Herrera-Fernández, A.C.; Carrillo-Parra, A.; Pedraza-Bucio, F.E.; Correa-Méndez, F.; Herrera-Bucio, R.; López-Albarrán, P.; Rutiaga-Quiñones, J.G. Densidad, composición química y poder calorífico de la madera de tres especies de encino (Quercus candicans, Q. laurina y Q. rugosa). Cienc. Nicolaita 2017, 91, 399–404. [Google Scholar]
- Barmpoutis, P.; Lykidis, C.; Barboutis, I. Influence of steam diameter and bark ratio of evergreen hardwoods on the fuel characteristics of the produced pellets. In Proceedings of the International Conference “Wood Science and Engineering in the Third Millennium”-ICWSE 2015, Brasov, Romania, 5–7 November 2015. [Google Scholar]
- Serret-Guasch, N.; Giralt-Ortega, G.; Quintero-Rios, M. Caracterización de aserrín de diferentes maderas. Tecnol. Quim. 2016, 36, 468–479. [Google Scholar]
- Lu, D.; Tabil, L.G.; Wang, D.; Wang, G.; Emami, S. Experimental trials to make wheat straw pellets with wood residue and binders. Biomass Bioenergy 2014, 69, 287–296. [Google Scholar] [CrossRef]
- Gillespie, G.D.; Everard, C.D.; Fagan, C.C.; McDonnell, K.P. Prediction of quality parameters of biomass pellets from proximate and ultimate analysis. Fuel 2013, 111, 771–777. [Google Scholar] [CrossRef]
- Lindström, E.; Larsson, S.H.; Boström, D.; Öhman, M. Slagging Characteristics during Combustion of Woody Biomass Pellets Made from a Range of Different Forestry Assortments. Energy Fuels 2010, 24, 3456–3461. [Google Scholar] [CrossRef]
- Eimil-Fraga, C.; Proupín-Castiñeiras, X.; Rodríguez-Añón, J.A.; Rodríguez-Soalleiro, R. Effects of Shoot Size and Genotype on Energy Properties of Poplar Biomass in Short Rotation Crops. Energies 2019, 12, 2051. [Google Scholar] [CrossRef]
- Werkelin, J.; Skrifvars, B.J.; Hupa, M. Ash-forming in four Scandinavian wood species. Part 1: Summer harvest. Biomass Bioenergy 2005, 29, 451–466. [Google Scholar] [CrossRef]
- Disco, Y.; Mahanta, P.; Bora, U. Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renew. Energy 2017, 103, 490–500. [Google Scholar] [CrossRef]
- Dumitrașcu, R.; Lunguleasa, A.; Spîrchez, C. Renewable Pellets Obtained from Aspen and Birch Bark. BioResources 2018, 13, 6985–7001. [Google Scholar] [CrossRef]
- Bajwa, D.S.; Peterson, T.; Sharma, N.; Shojaeiarani, J.; Bajwa, S.G. A review of densified solid biomass for energy production. Renew. Sustain. Energy Rev. 2018, 96, 296–305. [Google Scholar] [CrossRef]
- Antwi-Boasiako, C.; Acheampong, B.B. Strength properties and calorific values of sawdust-briquettes as wood-residue energy generation source from tropical hardwoods of different densities. Biomass Bioenergy 2016, 85, 144–152. [Google Scholar] [CrossRef]
Variable | Species | |||
---|---|---|---|---|
Q. sideroxyla | Q. rugosa | Q. laeta | Q. conzattii | |
Diameter | 32.4 | 29.8 | 35.4 | 30.3 |
% Stem wood | 88.3 | 90.1 | 97.1 | 95.3 |
% Bark | 11.7 | 9.9 | 2.9 | 4.7 |
Granulometric Distribution | Kolmogorov–Smirnov Test | Kruskal–Wallis Test | ||||||
---|---|---|---|---|---|---|---|---|
Particle Size | Species | Bark Content | ||||||
Statistic | p-Value | chi-squared | p-Value | chi-squared | p-Value | chi-squared | p-Value | |
Retained mass | 0.24682 | 1.384 × 10−10 | 175.1 | 2.20 × 10−16 | 0.25415 | 0.9684 | 0.28771 | 0.5917 |
Property | Shapiro-Wilk Test | Kruskal-Wallis Test | ANOVA Test | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Species | Bark Content | Species | Bark Content | Interaction Species: Bark Content | ||||||||
Statistic | p | χ2 | p | χ2 | p | F | p | F | p | F | p | |
BD | 0.95193 | 0.2982 | 9.77 | 0.0004 | 13.1 | 0.0015 | 2.91 | 6.68 × 10−2 | ||||
MC | 0.95247 | 0.3062 | - | - | - | - | 10.38 | 0.0002 | 1.263 | 0.273 | 2.19 | 6.50 ×10−6 |
VM | 0.96771 | 0.6109 | - | - | - | - | 0.884 | 0.446 | 24.98 | 5 × 10−5 | 4.37 | 0.01986 |
A | 0.85644 | 0.002885 | 7.98 | 0.0464 | 0.03 | 0.8625 | - | - | - | - | - | - |
FC | 0.97071 | 0.6846 | - | - | - | - | 0.844 | 0.486 | 24.68 | 6 × 10-05 | 4.3618 | 0.01999 |
CV | 0.92223 | 0.06544 | - | - | - | - | 6.141 | 0.0039 | 10.96 | 0.0032 | 2.94 | 6.48 × 10−2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Núñez-Retana, V.D.; Wehenkel, C.; Vega-Nieva, D.J.; García-Quezada, J.; Carrillo-Parra, A. The Bioenergetic Potential of Four Oak Species from Northeastern Mexico. Forests 2019, 10, 869. https://doi.org/10.3390/f10100869
Núñez-Retana VD, Wehenkel C, Vega-Nieva DJ, García-Quezada J, Carrillo-Parra A. The Bioenergetic Potential of Four Oak Species from Northeastern Mexico. Forests. 2019; 10(10):869. https://doi.org/10.3390/f10100869
Chicago/Turabian StyleNúñez-Retana, Víctor Daniel, Christian Wehenkel, Daniel José Vega-Nieva, Juan García-Quezada, and Artemio Carrillo-Parra. 2019. "The Bioenergetic Potential of Four Oak Species from Northeastern Mexico" Forests 10, no. 10: 869. https://doi.org/10.3390/f10100869
APA StyleNúñez-Retana, V. D., Wehenkel, C., Vega-Nieva, D. J., García-Quezada, J., & Carrillo-Parra, A. (2019). The Bioenergetic Potential of Four Oak Species from Northeastern Mexico. Forests, 10(10), 869. https://doi.org/10.3390/f10100869