Testing Goodness of Fit of Random Graph Models
Abstract
:1. Introduction
- degree sequences are sufficient statistics;
- the model covers practically all possible expected degree sequence;
- the conditional distribution of the graphs on condition of a prescribed degree sequence is uniform on the set of all graphs with the given degree sequences.
2. Goodness-of-Fit
- if beta model covers all possible degree sequences
- the conditional distribution is uniform over graphs sharing the same degree sequence
3. The k-Beta Model
Acknowledgements
References
- Rasch, G. Studies in Mathematical Psychology: I. Probabilistic Models for Some Intelligence and Attainment Tests; Nielsen & Lydiche: Oxford, UK, 1960. [Google Scholar]
- Andersen, E.B. Sufficient statistics and latent trait models. Psychomretrika 1977, 42, 69–81. [Google Scholar] [CrossRef]
- Linacre, J.M. Predicting responses from Rasch measures. J. Appl. Meas. 2010, 11, 1–10. [Google Scholar] [PubMed]
- Ponicny, I. Nonparametric goodness-of-fit tests for the Rasch model. Psychometrika 2001, 66, 437–460. [Google Scholar] [CrossRef]
- Verhelst, N. Testing the unidimensionality assumption of the Rasch model. Meth. Psychol. Res. Online 2001, 6, 231–271. [Google Scholar]
- Bickel, P.J.; Chen, A. A nonparametric view of network models and Newman-Girvan and other modularities. Proc. Natl. Acad. Sci. USA 2009, 106, 21068–21073. [Google Scholar] [CrossRef] [PubMed]
- Barvinok, A.; Hartigan, J.A. An asymptotic formula for the number of non-negative integer matrices with prescribed row and column sums. Available online: http://arxiv.org/abs/0910.2477 (accessed on 5 April 2010).
- Barvinok, A.; Hartigan, J.A. The number of graphs and a random graph with a given degree sequence. Available online: http://arxiv.org/abs/1003.0356 (accessed on 2 December 2011).
- Blitzstein, J.; Diaconis, P. A sequential importance sampling algorithm for generating random graphs with prescribed degrees. J. Int. Math. 2010, 6, 489–522. [Google Scholar] [CrossRef]
- Chatterjee, S.; Diaconis, P.; Sly, A. Random graphs with a given degree sequence. Ann. Stat. 2010, 21, 1400–1435. [Google Scholar] [CrossRef]
- Ogawa, M.; Hara, H.; Takemura, A. Graver basis for an undirected graph and its application to testing the beta model of random graphs. Ann. Inst. Stat. Mat. 2012. [Google Scholar] [CrossRef]
- Bolla, M.; Tusnády, G. Spectra and optimal partitions of weighted graphs. Discret. Math. 1994, 128, 1–20. [Google Scholar] [CrossRef]
- Csiszár, V.; Rejtő, L.; Tusnády, G. Statistical Inference on Random Structures. In Horizon of Combinatorics; Győri, E., Katona, G.O.H., Lovász, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 37–67. [Google Scholar]
- Csiszár, V.; Hussami, P.; Komlós, J.; Móri, T.; Rejtő, L.; Tusnády, G. When the degree sequence is a sufficient statistic. Acta Math. Hung. 2011, 134, 45–53. [Google Scholar] [CrossRef]
- Hussami, P. Statistical Inference on Random Graphs. Ph.D. Thesis, Central European University, Budapest, Hungary, 2010. [Google Scholar]
- Nepusz, T.; Négyessy, L.; Tusnády, G.; Bazsó, F. Reconstructing cortical networks: Case of directed graphs with high level of reciprocity. Dyn. Syst. Appl. 2009, 18, 335–362. [Google Scholar]
- Newman, M.; Barabási, A.-L.; Watts, D. The Structure and Dynamics of Networks. In Princeton Studies in Complexity; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar]
- Holland, P.; Laskey, K.B.; Leinhardt, S. Stochastic blockmodels: Some first steps. J. Am. Stat. Assoc. 1981, 76, 33–50. [Google Scholar] [CrossRef]
- Bickel, P.; Choi, D.; Chang, X.; Zhang, H. Asymptotic normality of maximum likelihood and its variational approximation for stochastic blockmodels. Ann. Stat. 2012. submitted for publication. [Google Scholar]
- Flynn, C.J.; Perry, P.O. Consistent biclustering. Available online: arXiv:1206.6927v1 [stat.ME] (accessed on 29 June 2012).
- Chung, F.; Lu, L.; Vu, V. Spectra of random graphs with given expected degrees. Proc. Natl. Acad. Sci. USA 2003, 27, 6313–6318. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, K.; Chung, F.; Tsiatas, A. Spectral clustering of graphs with general degrees in the extended planted partition model. J. Mach. Learn. Res. 2012, 1, 1–23. [Google Scholar]
- Mossel, E.; Neeman, J.; Sly, A. Reconstruction and estimation in the planted partition model. Available online: arXiv:1202.1499v4 [math.PR] (accessed on 22 August 2012).
- Karrer, B.; Newman, M.E.J. Stochastic blockmodels and community structure in networks. Phys. Rev. E 2011, 83, 016107. [Google Scholar] [CrossRef]
- Rohe, K.; Chatterjee, S.; Yu, B. Spectral clustrering and high-dimensional stochastic block model. Ann. Stat. 2011, 39, 1878–1915. [Google Scholar] [CrossRef]
- Chung, F. Spectral Graph Theory; American Mathematical Society: Providence, RI, USA, 1997. [Google Scholar]
- Chung, F.; Lu, L. Complex Graphs and Networks; American Mathematical Society: Boston, MA, USA, 2006. [Google Scholar]
- Lovász, L. Very large graphs. Available online: arXiv:0902.0132 (accessed on 1 February 2009).
- Lu, L.; Peng, X. Spectra of edge-independent random graphs. Available online: arXiv:1204.6207v1 [math.CO] (accessed on 27 April 2012).
- Nadakuditi, R.R.; Newman, M.E.J. Spectra of random graphs with arbitrary expected degrees. Available online: arXiv:1208.1275v1 [cs.SI] (accessed on 6 August 2012).
- Chatterjee, S.; Diaconis, P. Estimating and understanding exponential random graph models. Available online: arXiv:1102.2650v3[math.PR] (accessed on 6 April 2011).
- Palla, G.; Lovász, L.; Vicsek, T. Multifractal network generator. Proc. Natl. Acad. Sci. USA 2010, 107, 7641–7645. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Diaconis, P.; Holmes, S.P.; Liu, J.S. Sequential Monte Carlo methods for statistical analysis of tables. J. Am. Stat. Assoc. 2005, 100, 109–120. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Csiszár, V.; Hussami, P.; Komlós, J.; Móri, T.F.; Rejtõ, L.; Tusnády, G. Testing Goodness of Fit of Random Graph Models. Algorithms 2012, 5, 629-635. https://doi.org/10.3390/a5040629
Csiszár V, Hussami P, Komlós J, Móri TF, Rejtõ L, Tusnády G. Testing Goodness of Fit of Random Graph Models. Algorithms. 2012; 5(4):629-635. https://doi.org/10.3390/a5040629
Chicago/Turabian StyleCsiszár, Villõ, Péter Hussami, János Komlós, Tamás F. Móri, Lídia Rejtõ, and Gábor Tusnády. 2012. "Testing Goodness of Fit of Random Graph Models" Algorithms 5, no. 4: 629-635. https://doi.org/10.3390/a5040629
APA StyleCsiszár, V., Hussami, P., Komlós, J., Móri, T. F., Rejtõ, L., & Tusnády, G. (2012). Testing Goodness of Fit of Random Graph Models. Algorithms, 5(4), 629-635. https://doi.org/10.3390/a5040629