An Improved Bi-RRT Algorithm for Optimal Puncture Path Planning
Abstract
1. Introduction
2. Related Work
2.1. Two-Dimensional Puncture Path Planning
2.2. Three-Dimensional Puncture Path Planning
3. Method Construction
3.1. Brief Description of Bi-RRT Algorithm
3.2. Improved Bi-RRT Method: GBOPBi-RRT
3.2.1. Gravity-Oriented Strategy
3.2.2. Bidirectional Adaptive Scaling Strategy
3.2.3. Optimal Node Selection Based on A* Algorithm
3.2.4. Path Optimization Strategy
3.2.5. Algorithms Run Pseudo-Code
- (Lines 1–3) Initialize the forward tree rooted at and the backward tree rooted at . Set the algorithm parameters , , , and , and set the expansion direction flag forward_to_backward to true.
- (Lines 4 and 5) Randomly sample a point within the search space at each iteration to guide the bidirectional expansion.
- (Line 6) Select the optimal node in the current tree using an A*-inspired cost function that balances exploration efficiency and convergence toward the goal.
- (Lines 7–10) Compute an adaptive step size based on the distance between and the goal. Determine the expansion direction by combining the random sampling direction with a gravity term that biases the search toward the goal. Generate a new node from along this direction.
- (Lines 11 and 12) If the segment between and is collision-free, add to the current tree as a child of ; otherwise, skip to the next iteration.
- (Lines 13–17) Check whether the newly expanded node can connect the two trees. If a valid connection is found, reconstruct the complete path by merging the forward and backward trees, and terminate the loop. Alternate the expansion direction after each iteration to ensure balanced bidirectional growth.
- (Lines 19 and 20) Optimize the resulting path to remove redundant nodes and improve trajectory continuity. Return the optimized path as the final output.
| Algorithm 1 GBOPBi-RRT(, , Path) |
|
3.3. Puncture Path Analysis
3.3.1. Unicycle Kinematic Model
3.3.2. Reachable Space Analysis for Flexible Needles
4. Results
4.1. Simulation Results of Flexible Needle Two-Dimensional Path Planning
4.2. Simulation Results of Flexible Needle Three-Dimensional Path Planning
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.-D.; Zhao, Y.-J.; Tu, F.; Chen, H.; Zhang, Y.-H. A Review on Path Planning of Flexible Needle. J. Harbin Univ. Sci. Technol. 2011, 16, 7–11. [Google Scholar]
- Li, P.; Yang, Z.; Jiang, S. Needle-tissue interactive mechanism and steering control in image-guided robot-assisted minimally invasive surgery: A review. Med. Biol. Eng. Comput. 2018, 56, 931–949. [Google Scholar] [CrossRef]
- Duan, X.-G.; Wen, H.; He, R.; Li, X.; Qiu, J. Research progress and key technologies of thoraco-abdominal percutaneous puncture robots. Robot 2021, 43, 567–584. [Google Scholar]
- Zhang, H.; Zhao, Y.-J.; Jin, Y.-X.; Duan, H.-L. Path planning algorithm of steerable flexible needle: A review. Expert Syst. Appl. 2025, 287, 128270. [Google Scholar] [CrossRef]
- Alterovitz, R.; Lim, A.; Goldberg, K.; Chirikjian, G.S.; Okamura, A.M. Steering flexible needles under Markov motion uncertainty. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 1570–1575. [Google Scholar]
- Alterovitz, R.; Siméon, T.; Goldberg, K. The stochastic motion roadmap: A sampling framework for planning with Markov motion uncertainty. In Proceedings of the Robotics: Science and Systems, Atlanta, GA, USA, 27–30 June 2007; pp. 1–10. [Google Scholar]
- Akopov, A.S.; Beklaryan, L.A. Evolutionary Synthesis of High-Capacity Reconfigurable Multilayer Road Networks Using a Multiagent Hybrid Clustering-Assisted Genetic Algorithm. IEEE Access 2025, 13, 53448–53453. [Google Scholar] [CrossRef]
- Huang, C.; Zhao, Y.; Zhang, M.; Yang, H. APSO: An A*-PSO Hybrid Algorithm for Mobile Robot Path Planning. IEEE Access 2023, 11, 43238–43242. [Google Scholar] [CrossRef]
- Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, L.; Zhang, F. A survey on puncture models and path planning algorithms of bevel-tipped flexible needles. Heliyon 2024, 10, e25002. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zheng, S.; Ren, Y.; Du, D. Path planning based on the improved RRT* algorithm for the mining truck. Comput. Mater. Contin. 2022, 70, 6075–6087. [Google Scholar] [CrossRef]
- Huang, B.; Liu, J.; Li, H.; Li, X.; He, R. Research on the path planning method for multi-axis sorting roboticarms under complex working conditions. Mach. Des. Manuf. 2025, 7, 24–33. [Google Scholar]
- Zhao, Y.J.; Zhang, Y.D.; Tu, F. Reverse Path Planning for Flexible Needle in 2D Soft Tissue with Obstacles. Appl. Mech. Mater. 2012, 121, 4132–4137. [Google Scholar] [CrossRef]
- Bobrenkov, O.A.; Lee, J.; Park, W. A new geometry-based plan for inserting flexible needles to reach multiple targets. Robotica 2014, 32, 985–1004. [Google Scholar] [CrossRef]
- Huo, B.; Zhao, X.; Han, J.; Xu, W. Path-tracking control of bevel-tip needles using Model Predictive Control. In Proceedings of the IEEE 14th International Workshop on Advanced Motion Control (AMC), Auckland, New Zealand, 22–24 April 2016; pp. 197–202. [Google Scholar] [CrossRef]
- Li, X.; Li, P.; Xiong, J. Path planning for flexible needle based on environment properties and random method. Comput. Eng. Appl. 2017, 53, 121–125. [Google Scholar] [CrossRef]
- Li, M.; Lei, Y.; Huang, C.; Hu, Y.D.; Du, S.; Guan, H.; Gao, D.D. Flexible Needle Path Planning Based on the Iterative Learning Algorithm. J. Mech. Eng. 2021, 57, 128–137. [Google Scholar] [CrossRef]
- Xiong, P.W.; Zhou, X.T.; Li, Q.; Song, A.G.; Liu, X.P. Path prediction of flexible needles based on Fokker-Planck equation and disjunctive Kriging model. J. Southeast Univ. (Engl. Ed.) 2022, 38, 118–125. (In English) [Google Scholar] [CrossRef]
- Ackerman, C. Robot steering with spectral image information. IEEE Trans. Robot. 2005, 21, 247–258. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, Z.; Zhang, H. An Improved RRT* Algorithm Combining Motion Constraint and Artificial Potential Field for Robot-Assisted Flexible Needle Insertion in 3D Environment. In Proceedings of the 2021 3rd International Conference on Industrial Artificial Intelligence (IAI), Shenyang, China, 8–11 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Zhao, B.-L.; Shao, S.-P.; Lei, L.; Wang, X.-W.; Yang, X.-J.; Wang, Q. Curve Fitting-Based Dynamic Path Planning and Tracking Control for Flexible Needle Insertion. IEEE Trans. Biomed. Eng. 2025, 72, 654–665. [Google Scholar] [CrossRef]
- Lei, Y.; Du, S.; Li, M.; Xu, T.; Hu, Y.; Wang, Z. Needle-tissue interaction model based needle path planning method. Comput. Methods Programs Biomed. 2024, 245, 108027. [Google Scholar] [CrossRef]
- Kuffner, J.J.; LaValle, S.M. RRT-connect: An efficient approach to single-query path planning. In Proceedings of the Millennium Conference IEEE International Conference on Robotics and Automation Symposia (ICRA), San Francisco, CA, USA, 24–28 April 2000; pp. 995–1001. [Google Scholar]
- Wang, X.; Wang, T.; Ding, W. Path Planning of Robot Manipulator Based on Improved Artificial Potential Field Method. Mach. Tool Manuf. Autom. 2022, 6, 24–27. [Google Scholar]
- Sun, L.; Zhao, Y.; Zhang, J. Research on path planning algorithm of unmanned ship. In Proceedings of the 4th 2024 International Conference on Autonomous Unmanned Systems (ICAUS 2024), Beijing, China, 18–20 October 2024; Springer: Berlin/Heidelberg, Germany, 2025; pp. 1–12. [Google Scholar]
- Huang, Z.; Jiang, C.; Shen, C.; Liu, B.; Huang, T.; Zhang, M. A hybrid dynamic path-planning method for obstacle avoidance in unmanned aerial vehicle-based power inspection. World Electr. Veh. J. 2025, 16, 123. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, Y.; Zhang, J. Research on path planning algorithm of unmanned ship in narrow water area. J. Phys. Conf. Ser. 2021, 2029, 012122. [Google Scholar] [CrossRef]
- Jian, X.; Zou, T.; Vardy, A.; Bose, N. A hybrid path planning strategy of autonomous underwater vehicles. In Proceedings of the IEEE/OES Autonomous Underwater Vehicles Symposium (AUV), St. Johns, NL, Canada, 30 September–2 October 2020. [Google Scholar] [CrossRef]
- Webster, R.J., III; Kim, J.S.; Cowan, N.J.; Chirikjian, G.S.; Okamura, A.M. Nonholonomic modeling of needle steering. Int. J. Robot. Res. 2006, 25, 509–525. [Google Scholar] [CrossRef]
- Webster, R.J.; Memisevic, J.; Okamura, A.M. Design considerations for robotic needle steering. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 3588–3594. [Google Scholar]
- Hung, B.T.; Sekar, M.; Esi, A.; Kumar, R.S. Applications of Mathematics in Science and Technology—International Conference on Mathematical Applications in Science and Technology; CRC Press: Boca Raton, FL, USA, 2025. [Google Scholar]
- Zhao, Y.-J.; Liu, Z.-H.; Zhang, Y.-D.; Liu, Z.-Q. Kinematic model and its parameter identification for cannula flexible needle insertion into soft tissue. Adv. Mech. Eng. 2019, 11, 168781401985218. [Google Scholar] [CrossRef]
- Duindam, V.; Alterovitz, R.; Sastry, S.; Goldberg, K. Screw-based motion planning for bevel-tip flexible needles in 3D environments with obstacles. In Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 2483–2488. [Google Scholar]
- Minhas, D.S.; Engh, J.A.; Fenske, M.M.; Riviere, C.N. Modeling of needle steering via duty-cycled spinning. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 23–26 August 2007; pp. 2756–2759. [Google Scholar]












| Arithmetic | Path Length | Experimental Time (s) | Number of Nodes | Number of Iterations |
|---|---|---|---|---|
| RRT | 1264.55 | 12.17 | 400 | 448 |
| RRT* | 1109.82 | 4.56 | 384 | 421 |
| Bi-RRT | 1234.67 | 2.38 | 80 | 94 |
| GBOPBi-RRT | 947.33 | 1.50 | 48 | 108 |
| Arithmetic | Path Length | Experimental Time (s) | Number of Nodes | Number of Iterations |
|---|---|---|---|---|
| RRT | 260.47 | 5.88 | 562 | 728 |
| RRT* | 203.95 | 3.83 | 393 | 614 |
| Bi-RRT | 212.31 | 4.19 | 40 | 19 |
| GBOPBi-RRT | 147.92 | 2.31 | 23 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Ran, Y.; Chen, Z. An Improved Bi-RRT Algorithm for Optimal Puncture Path Planning. Algorithms 2025, 18, 702. https://doi.org/10.3390/a18110702
Wang S, Ran Y, Chen Z. An Improved Bi-RRT Algorithm for Optimal Puncture Path Planning. Algorithms. 2025; 18(11):702. https://doi.org/10.3390/a18110702
Chicago/Turabian StyleWang, Shigang, Yunqi Ran, and Zhan Chen. 2025. "An Improved Bi-RRT Algorithm for Optimal Puncture Path Planning" Algorithms 18, no. 11: 702. https://doi.org/10.3390/a18110702
APA StyleWang, S., Ran, Y., & Chen, Z. (2025). An Improved Bi-RRT Algorithm for Optimal Puncture Path Planning. Algorithms, 18(11), 702. https://doi.org/10.3390/a18110702

