Squeeze-and-Excitation Networks and the Improved Informer Model for Bearing Fault Diagnosis
Abstract
1. Introduction
2. Related Work
- (1)
- First, we designed a fault diagnosis model based on SENet and the improved Informer. By effectively combining the spatial feature extraction capability of convolutional neural networks with the time series modeling ability of Informer, the model enables efficient and accurate fault diagnosis in different operating conditions.
- (2)
- Subsequently, during the data processing stage, we employed the Conv1D method to extract local features and handle the local dependencies of sequence data. By utilizing Positional Embedding and Token Embedding, we preserved the sequential information and semantic representations of the data, providing high-quality input for subsequent operations. This approach enables the model to capture global dependencies, thus improving the performance of subsequent stages.
- (3)
- Finally, the fault diagnosis model presented in this study was empirically validated using two distinct datasets: the CWRU and HUST public datasets. According to the experimental results, the fault diagnosis model suggested in this study attains over 99% detection accuracy on both datasets. This demonstrates its effective fault diagnosis performance. Furthermore, this model shows better fault diagnosis performance and consistency when compared to other deep learning models.
3. Basic Theory
3.1. Informer
3.1.1. Data Embedding
3.1.2. ProbSparse Self-Attention
3.1.3. Self-Attention Distilling
3.2. SENet
4. Proposed Method
4.1. The Overall Architecture of SENet-Informer Diagnosis Model
4.1.1. Data Processing
4.1.2. The Structure of SE-Conv1d
4.1.3. The Encoder Structure of SENet-Informer Model
4.1.4. Classifier Head
4.2. Overall Process of the SENet-Informer Method
5. Experimental Verification
5.1. CWRU Bearing Dataset
5.1.1. CWRU Dataset Description
5.1.2. Selection of Model Parameters and Experimental Analysis
5.1.3. Experimental Comparison and Result Analysis
5.2. HUST Bearing Dataset
5.2.1. HUST Dataset Description
5.2.2. Experimental Comparison and Result Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ni, Q.; Ji, J.C.; Halkon, B.; Feng, K.; Nandi, A.K. Physics-Informed Residual Network (PIResNet) for rolling element bearing fault diagnostics. Mech. Syst. Signal Process. 2023, 200, 110544. [Google Scholar] [CrossRef]
- Cerrada, M.; Sánchez, R.V.; Li, C.; Pacheco, F.; Cabrera, D.; De Oliveira, J.V.; Vásquez, R.E. A review on data-driven fault severity assessment in rolling bearings. Mech. Syst. Signal Process. 2018, 99, 169–196. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, S.; Wang, B.; Habetler, T.G. Deep learning algorithms for bearing fault diagnostics—A comprehensive review. IEEE Access 2020, 8, 29857–29881. [Google Scholar] [CrossRef]
- Magar, R.; Ghule, L.; Li, J.; Zhao, Y.; Farimani, A.B. FaultNet: A deep convolutional neural network for bearing fault classification. IEEE Access 2021, 9, 25189–25199. [Google Scholar] [CrossRef]
- Aburakhia, S.A.; Myers, R.; Shami, A. A hybrid method for condition monitoring and fault diagnosis of rolling bearings with low system delay. IEEE Trans. Instrum. Meas. 2022, 71, 3519913. [Google Scholar] [CrossRef]
- Saufi, S.R.; Ahmad, Z.A.B.; Leong, M.S.; Hee, L.M. Bearing fault diagnosis using deep sparse autoencoder. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Suzhou, China, 17–19 March 2021; Volume 1062, p. 012002. [Google Scholar]
- Vashishtha, G.; Chauhan, S.; Sehri, M.; Hebda-Sobkowicz, J.; Zimroz, R.; Dumond, P.; Kumar, R. Advancing machine fault diagnosis: A detailed examination of convolutional neural networks. Meas. Sci. Technol. 2024, 36, 022001. [Google Scholar] [CrossRef]
- Sinitsin, V.; Ibryaeva, O.; Sakovskaya, V.; Eremeeva, V. Intelligent bearing fault diagnosis method combining mixed input and hybrid CNN-MLP model. Mech. Syst. Signal Process. 2022, 180, 109454. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Yan, R.; Gao, R.X. A new intelligent bearing fault diagnosis method using SDP representation and SE-CNN. IEEE Trans. Instrum. Meas. 2019, 69, 2377–2389. [Google Scholar] [CrossRef]
- Cui, W.; Meng, G.; Wang, A.; Zhang, X.; Ding, J. Application of rotating machinery fault diagnosis based on deep learning. Shock Vib. 2021, 2021, 3083190. [Google Scholar] [CrossRef]
- Hewamalage, H.; Bergmeir, C.; Bandara, K. Recurrent neural networks for time series forecasting: Current status and future directions. Int. J. Forecast. 2021, 37, 388–427. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, J.; Zheng, Y.; Jiang, W.; Zhang, Y. Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders. ISA Trans. 2018, 77, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Qiao, M.; Yan, S.; Tang, X.; Xu, C. Deep convolutional and LSTM recurrent neural networks for rolling bearing fault diagnosis under strong noises and variable loads. IEEE Access 2020, 8, 66257–66269. [Google Scholar] [CrossRef]
- Pan, H.; He, X.; Tang, S.; Meng, F. An improved bearing fault diagnosis method using one-dimensional CNN and LSTM. J. Mech. Eng./Stroj. Vestn. 2018, 64, 443–452. [Google Scholar]
- Sun, H.; Fan, Y. Fault diagnosis of rolling bearings based on CNN and LSTM networks under mixed load and noise. Multimed. Tools Appl. 2023, 82, 43543–43567. [Google Scholar] [CrossRef]
- Wang, M.; Qin, F. A TCN-Linear Hybrid Model for Chaotic Time Series Forecasting. Entropy 2024, 26, 467. [Google Scholar] [CrossRef]
- Hao, H.; Wang, Y.; Xue, S.; Xia, Y.; Zhao, J.; Shen, F. Temporal convolutional attention-based network for sequence modeling. arXiv 2020, arXiv:2002.12530. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Tama, B.A.; Vania, M.; Lee, S.; Lim, S. Recent advances in the application of deep learning for fault diagnosis of rotating machinery using vibration signals. Artif. Intell. Rev. 2023, 56, 4667–4709. [Google Scholar] [CrossRef]
- Pei, X.; Zheng, X.; Wu, J. Rotating machinery fault diagnosis through a transformer convolution network subjected to transfer learning. IEEE Trans. Instrum. Meas. 2021, 70, 2515611. [Google Scholar] [CrossRef]
- Nath, A.G.; Udmale, S.S.; Raghuwanshi, D.; Singh, S.K. Structural rotor fault diagnosis using attention-based sensor fusion and transformers. IEEE Sens. J. 2021, 22, 707–719. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 2–9 February 2021; Volume 35, pp. 11106–11115. [Google Scholar]
- Yang, Z.; Liu, L.; Li, N.; Tian, J. Time series forecasting of motor bearing vibration based on informer. Sensors 2022, 22, 5858. [Google Scholar] [CrossRef]
- Tepetidis, N.; Koutsoyiannis, D.; Iliopoulou, T.; Dimitriadis, P. Investigating the Performance of the Informer Model for Streamflow Forecasting. Water 2024, 16, 2882. [Google Scholar] [CrossRef]
- Wei, H.; Wang, W.-S.; Kao, X.X. A novel approach to ultra-short-term wind power prediction based on feature engineering and informer. Energy Rep. 2023, 9, 1236–1250. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Appel, A.W. SSA is functional programming. ACM Sigplan Not. 1998, 33, 17–20. [Google Scholar] [CrossRef]
- Smith, W.A.; Randall, R.B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study. Mech. Syst. Signal Process. 2015, 64, 100–131. [Google Scholar] [CrossRef]
- Xiong, F.; Wen, H.; Zhang, C.; Song, C.; Zhou, X. Semantic segmentation recognition model for tornado-induced building damage based on satellite images. J. Build. Eng. 2022, 61, 105321. [Google Scholar] [CrossRef]
- Zhao, C.; Zio, E.; Shen, W. Domain generalization for cross-domain fault diagnosis: An application-oriented perspective and a benchmark study. Reliab. Eng. Syst. Saf. 2024, 245, 109964. [Google Scholar] [CrossRef]















| Label | Fault Position | Fault Radius/mm | Total Samples |
|---|---|---|---|
| 0 | Norm | 0 | 1400/466/466 |
| 1 | Inner | 0.18 | 1400/466/466 |
| 2 | Inner | 0.36 | 1400/466/466 |
| 3 | Inner | 0.53 | 1400/466/466 |
| 4 | Outer | 0.18 | 1400/466/466 |
| 5 | Outer | 0.36 | 1400/466/466 |
| 6 | Outer | 0.53 | 1400/466/466 |
| 7 | Ball | 0.18 | 1400/466/466 |
| 8 | Ball | 0.36 | 1400/466/466 |
| 9 | Ball | 0.53 | 1400/466/466 |
| Parameter | Value |
|---|---|
| Input size Batch size Epochs | 1024 32 90 |
| Optimizer | Adam |
| Number of encoder layers | 3 |
| Embedding dimension | 256 |
| Hidden dimension | 216 |
| Number of attention heads | 4 |
| Dropout rate | 0.5 |
| Learn rate | 0.0003 |
| Type | Model | SENet | Prob-Attention | Distil | Accuracy % | Time (s) |
|---|---|---|---|---|---|---|
| 1 | Informer | √ | √ | 92.41 | 756 | |
| 2 | Informer | √ | √ | 97.10 | 730 | |
| 3 | Informer | √ | √ | 98.62 | 734 | |
| 4 | Informer | √ | √ | √ | 99.78 | 759 |
| Model | Accuracy % | Recall | F1-Score | Std-Variance |
|---|---|---|---|---|
| SENet-Informer | 99.78 | 0.9978 | 0.9978 | |
| Transformer | 97.10 | 0.9710 | 0.9706 | |
| CNN | 96.21 | 0.9621 | 0.9616 | |
| CNN-LSTM | 98.66 | 0.9844 | 0.9843 | |
| LSTM | 95.76 | 0.9576 | 0.9577 | |
| TCN | 83.04 | 0.8304 | 0.8308 |
| Label | Fault Position | Speed (r/min) | Total Samples |
|---|---|---|---|
| 0 | Normal | 0-2400-0 | 1680/560/560 |
| 1 | Medium inner | 0-2400-0 | 1680/560/560 |
| 2 | Severe inner | 0-2400-0 | 1680/560/560 |
| 3 | Medium outer | 0-2400-0 | 1680/560/560 |
| 4 | Severe outer | 0-2400-0 | 1680/560/560 |
| 5 | Medium ball | 0-2400-0 | 1680/560/560 |
| 6 | Severe ball | 0-2400-0 | 1680/560/560 |
| 7 | Medium combo | 0-2400-0 | 1680/560/560 |
| 8 | Severe combo | 0-2400-0 | 1680/560/560 |
| Model | Accuracy % | Recall | F1-Score | Std-Variance |
|---|---|---|---|---|
| SENet-Informer | 99.45 | 0.9945 | 0.9945 | |
| Transformer | 86.03 | 0.8603 | 0.8612 | |
| CNN | 96.88 | 0.9688 | 0.9686 | |
| CNN-LSTM | 98.90 | 0.9890 | 0.9889 | |
| LSTM | 70.59 | 0.7059 | 0.6643 | |
| TCN | 74.45 | 0.7445 | 0.7374 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, B.; Du, Y.; Xie, Z.; Chen, S. Squeeze-and-Excitation Networks and the Improved Informer Model for Bearing Fault Diagnosis. Algorithms 2025, 18, 700. https://doi.org/10.3390/a18110700
Yuan B, Du Y, Xie Z, Chen S. Squeeze-and-Excitation Networks and the Improved Informer Model for Bearing Fault Diagnosis. Algorithms. 2025; 18(11):700. https://doi.org/10.3390/a18110700
Chicago/Turabian StyleYuan, Bin, Yanghui Du, Zengbiao Xie, and Suifan Chen. 2025. "Squeeze-and-Excitation Networks and the Improved Informer Model for Bearing Fault Diagnosis" Algorithms 18, no. 11: 700. https://doi.org/10.3390/a18110700
APA StyleYuan, B., Du, Y., Xie, Z., & Chen, S. (2025). Squeeze-and-Excitation Networks and the Improved Informer Model for Bearing Fault Diagnosis. Algorithms, 18(11), 700. https://doi.org/10.3390/a18110700
