Structural Reliability Analysis Using Stochastic Finite Element Method Based on Krylov Subspace
Abstract
:1. Introduction
2. Theoretical Development
3. Numerical Verification
3.1. A Beam Structure
3.2. A 1220-Bar Steel Structure
3.3. A Plate Structure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Teixeira, R.; Nogal, M.; O’Connor, A. Adaptive approaches in metamodel-based reliability analysis: A review. Struct. Saf. 2021, 89, 102019. [Google Scholar] [CrossRef]
- Afshari, S.S.; Enayatollahi, F.; Xu, X.; Liang, X. Machine learning-based methods in structural reliability analysis: A review. Reliab. Eng. Syst. Saf. 2022, 219, 108223. [Google Scholar] [CrossRef]
- Betz, W.; Papaioannou, I.; Straub, D. Bayesian post-processing of Monte Carlo simulation in reliability analysis. Reliab. Eng. Syst. Saf. 2022, 227, 108731. [Google Scholar] [CrossRef]
- Luo, C.; Keshtegar, B.; Zhu, S.P.; Taylan, O.; Niu, X.-P. Hybrid enhanced Monte Carlo simulation coupled with advanced machine learning approach for accurate and efficient structural reliability analysis. Comput. Methods Appl. Mech. Eng. 2022, 388, 114218. [Google Scholar] [CrossRef]
- Lenhardt, I.; Rottner, T. Krylov subspace methods for structural finite element analysis. Parallel Comput. 1999, 25, 861–875. [Google Scholar] [CrossRef]
- Shi, C.; Zhao, M.; Han, X.; Wang, Y. Overview of Reliability Analysis Methods Based on Random Finite Element Method. China Rubber Ind. 2023, 70, 305–310. [Google Scholar]
- Pang, R.; Yang, Y.; Zhou, Y.; Jing, M.; Xu, B. Seismic reliability analysis of high earth-rockfill dams subjected to mainshock-aftershock sequences using a novel noninvasive stochastic finite element method. Soil Dyn. Earthq. Eng. 2024, 183, 108817. [Google Scholar] [CrossRef]
- Do, N.T.; Tran, T.T. Random vibration analysis of FGM plates subjected to moving load using a refined stochastic finite element method. Def. Technol. 2024, 34, 42–56. [Google Scholar] [CrossRef]
- Ghannoum, M.; Baroth, J.; Millard, A.; Rospars, C. Stochastic finite element modeling of heterogeneities in massive concrete and reinforced concrete structures. Int. J. Numer. Anal. Methods Geomech. 2024, 48, 1227–1244. [Google Scholar] [CrossRef]
- Kamiński, M.; Guminiak, M.; Lenartowicz, A.; Łasecka-Plura, M.; Przychodzki, M.; Sumelka, W. Eigenvibrations of Kirchhoff Rectangular Random Plates on Time-Fractional Viscoelastic Supports via the Stochastic Finite Element Method. Materials 2023, 16, 7527. [Google Scholar] [CrossRef]
- Xiang, P.; Yan, W.; Jiang, L.; Zhou, W.; Wei, B.; Liu, X. Resonance analysis of a high-speed railway bridge using a stochastic finite element method. Earthq. Eng. Eng. Vib. 2023, 22, 1015–1030. [Google Scholar] [CrossRef]
- Nastos, C.; Komninos, P.; Zarouchas, D. Non-destructive strength prediction of composite laminates utilizing deep learning and the stochastic finite element methods. Compos. Struct. 2023, 311, 116815. [Google Scholar] [CrossRef]
- Zheng, Z.; Valdebenito, M.; Beer, M.; Nackenhorst, U. A stochastic finite element scheme for solving partial differential equations defined on random domains. Comput. Methods Appl. Mech. Eng. 2023, 405, 115860. [Google Scholar] [CrossRef]
- Zheng, Z.; Dai, H.; Beer, M. Efficient structural reliability analysis via a weak-intrusive stochastic finite element method. Probabilistic Eng. Mech. 2023, 71, 103414. [Google Scholar] [CrossRef]
- Santos, F.L.; Scinocca, F.; de Siqueira Marques, D.; Velloso, N.S.; de Melo Villar, F.M. Modal properties of macaw palm fruit-rachilla system: An approach by the stochastic finite element method (SFEM). Comput. Electron. Agric. 2021, 184, 106099. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, L.; Xiang, P.; Zhou, W.; Lai, Z.; Feng, Y. Stochastic finite element method based on point estimate and Karhunen–Loéve expansion. Arch. Appl. Mech. 2021, 91, 1257–1271. [Google Scholar] [CrossRef]
- Han, Z.; Yu, T.; Phan, H.; Bui, T.Q. Extended stochastic finite element method enhanced by local mesh refinement for random voids analysis. Comput. Struct. 2020, 239, 106326. [Google Scholar] [CrossRef]
- Kormi, T.; Hentati, A.; Selmi, M.; Ali, N.B. Reliability-based assessment of foundations under HM combined loading using random finite element method. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2020, 14, 293–307. [Google Scholar] [CrossRef]
- Ahmadi Moghaddam, H.; Mertiny, P. Stochastic finite element analysis framework for modelling electrical properties of particle-modified polymer composites. Nanomaterials 2020, 10, 1754. [Google Scholar] [CrossRef]
- Lacour, M.; Bal, G.; Abrahamson, N. Dynamic stochastic finite element method using time-dependent generalized polynomial chaos. Int. J. Numer. Anal. Methods Geomech. 2021, 45, 293–306. [Google Scholar] [CrossRef]
- Bouhjiti, D.E.M.; Baroth, J.; Dufour, F.; Michel-Ponnelle, S.; Masson, B. Stochastic finite elements analysis of large concrete structures’ serviceability under thermo-hydro-mechanical loads–Case of nuclear containment buildings. Nucl. Eng. Des. 2020, 370, 110800. [Google Scholar] [CrossRef]
- Wu, P.; Ni, B.; Jiang, C. An interval finite element method based on the neumann series expansion. Chin. J. Theor. Appl. Mech. 2020, 52, 1431–1442. [Google Scholar]
- Shinozuka, M.; Yamazaki, F. Stochastic finite element analysis: An introduction. In Stochastic Structural Dynamics; Chapman and Hall/CRC: Boca Raton, FL, USA, 2020; pp. 241–291. [Google Scholar]
- Aggarwal, A.; Jensen, B.S.; Pant, S.; Lee, C.-H. Strain energy density as a Gaussian process and its utilization in stochastic finite element analysis: Application to planar soft tissues. Comput. Methods Appl. Mech. Eng. 2023, 404, 115812. [Google Scholar] [CrossRef] [PubMed]
- Vievering, J.; Le, J.L. Mechanistic map of random fields for stochastic finite element simulations of quasibrittle fracture. J. Mech. Phys. Solids 2024, 186, 105578. [Google Scholar] [CrossRef]
- Zeng, Q.P.; Wang, J.T.; Zhang, M.Z.; Wang, X.C.; Huang, H.L.; Pan, J.W. Seismic analysis of gravity dam-foundation systems using stochastic spectral finite element method. Soil Dyn. Earthq. Eng. 2024, 182, 108723. [Google Scholar] [CrossRef]
- Yang, Q.W. Model reduction by Neumann series expansion. Appl. Math. Model. 2009, 33, 4431–4434. [Google Scholar] [CrossRef]
- Yang, Q.W.; Peng, X.A. highly efficient method for structural model reduction. Int. J. Numer. Methods Eng. 2023, 124, 513–533. [Google Scholar] [CrossRef]
- Wang, X.; Cen, S.; Li, C. Generalized Neumann expansion and its application in stochastic finite element methods. Math. Probl. Eng. 2013, 2013, 325025. [Google Scholar] [CrossRef]
- Bae, H.R.; Forster, E.E. Improved Neumann expansion method for stochastic finite element analysis. J. Aircr. 2017, 54, 967–979. [Google Scholar] [CrossRef]
- Degeneve, L.; Takano, N. Influence of higher orders of Neumann expansion on accuracy of stochastic linear elastic finite element method with random physical parameters. Mech. Eng. Lett. 2020, 6, 20–00228. [Google Scholar] [CrossRef]
- Ávila da S., C.R., Jr.; Squarcio, R.M.F. The Neumann–Monte Carlo methodology applied to the quantification of uncertainty in the problem stochastic bending of the Levinson–Bickford beam. Arch. Appl. Mech. 2023, 93, 2009–2024. [Google Scholar] [CrossRef]
- Golub, G.H.; Van Loan, C.F. Matrix Computations; JHU Press: Baltimore, MA, USA, 2013. [Google Scholar]
Method | Complete Analysis | ) | ) |
---|---|---|---|
Time, s | 2.6630 | 0.5280 | 0.4600 |
Method | Complete Analysis | ) | ) |
---|---|---|---|
Vertical displacement range, mm | [8.5827, 9.8853] | [8.5796, 9.8743] | [8.5792, 9.8817] |
Mean, mm | 9.1999 | 9.1973 (0.028%) * | 9.1980 (0.021%) |
Standard deviation | 0.1689 | 0.1685 (0.237%) | 0.1689 (0.000%) |
Failure probability | 0.0049 | 0.0043 (12.245%) | 0.0048 (2.041%) |
Method | Complete Analysis | ) | ) |
---|---|---|---|
Time, s | 2.7440 | 0.5350 | 0.4400 |
Method | Complete Analysis | ) | ) |
---|---|---|---|
Vertical displacement range, mm | [8.4935, 10.5694] | [8.4616, 10.4601] | [8.4815, 10.5367] |
Mean, mm | 9.3172 | 9.3030 (0.152%) * | 9.3080 (0.096%) |
Standard deviation | 0.2622 | 0.2587 (1.335%) | 0.2610 (0.458%) |
Failure probability | 0.0998 | 0.0881 (11.723%) | 0.0936 (6.212%) |
Method | Complete Analysis | ) | ) |
---|---|---|---|
Time, s | 2.6830 | 0.5600 | 0.4680 |
Method | Complete Analysis | ) | ) |
---|---|---|---|
Vertical displacement range, mm | [8.3197, 18.2692] | [8.2519, 11.2314] | [8.3259, 11.4614] |
Mean, mm | 9.5103 | 9.4589 (0.540%) * | 9.4768 (0.352%) |
Standard deviation | 0.3955 | 0.3670 (7.206%) | 0.3748 (5.234%) |
Failure probability | 0.3277 | 0.2824 (13.824%) | 0.2981 (9.033%) |
Method | Complete Analysis | ) | ) |
---|---|---|---|
Time, s | 2.6830 | 0.5320 | 0.6800 |
Method | Complete Analysis | ) | ) |
---|---|---|---|
Vertical displacement range, mm | [8.3197, 18.2692] | [8.3232, 14.9297] | [8.3197, 17.4046] |
Mean, mm | 9.5103 | 9.5066 (0.039%) * | 9.5099 (0.004%) |
Standard deviation | 0.3955 | 0.3874 (2.048%) | 0.3935 (0.506%) |
Failure probability | 0.3277 | 0.3258 (0.580%) | 0.3273 (0.122%) |
Method | Complete Analysis | ) | ) |
---|---|---|---|
Time, s | 8.1250 | 1.0160 | 0.6870 |
Method | Complete Analysis | ) | ) |
---|---|---|---|
Vertical displacement range, mm | [8.1852, 8.6521] | [8.1840, 8.6502] | [8.1847, 8.6513] |
Mean, mm | 8.3907 | 8.3900 (0.008%) * | 8.3903 (0.005%) |
Standard deviation | 0.0726 | 0.0725 (0.138%) | 0.0725 (0.138%) |
Failure probability | 0.052 | 0.049 (5.769%) | 0.051 (1.923%) |
Method | Complete Analysis | ) | ) |
---|---|---|---|
Time, s | 5.3820 | 2.3080 | 1.1830 |
Method | Complete Analysis | ) | ) |
---|---|---|---|
Vertical displacement range, mm | [2.5461, 2.6669] | [2.5461, 2.6668] | [2.5461, 2.6670] |
Mean, mm | 2.6109 | 2.6109 (0.00%) * | 2.6109 (0.00%) |
Standard deviation | 0.0175 | 0.0175 (0.00%) | 0.0175 (0.00%) |
Failure probability | 0 | 0 (0.00%) | 0 (0.00%) |
Method | Complete Analysis | ) | ) |
---|---|---|---|
Time, s | 5.7450 | 2.8350 | 1.4110 |
Method | Complete Analysis | ) | ) |
---|---|---|---|
Vertical displacement range, mm | [2.3902, 2.9229] | [2.3861, 2.9114] | [2.3893, 2.9148] |
Mean, mm | 2.6627 | 2.6591 (0.135%) * | 2.6604 (0.086%) |
Standard deviation | 0.0752 | 0.0744 (1.064%) | 0.0747 (0.665%) |
Failure probability | 0.159 | 0.145 (8.805%) | 0.152 (4.403%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Yang, Q.; Cao, H.; Ma, J. Structural Reliability Analysis Using Stochastic Finite Element Method Based on Krylov Subspace. Algorithms 2024, 17, 424. https://doi.org/10.3390/a17100424
Huang J, Yang Q, Cao H, Ma J. Structural Reliability Analysis Using Stochastic Finite Element Method Based on Krylov Subspace. Algorithms. 2024; 17(10):424. https://doi.org/10.3390/a17100424
Chicago/Turabian StyleHuang, Jianyun, Qiuwei Yang, Hongfei Cao, and Jiwei Ma. 2024. "Structural Reliability Analysis Using Stochastic Finite Element Method Based on Krylov Subspace" Algorithms 17, no. 10: 424. https://doi.org/10.3390/a17100424
APA StyleHuang, J., Yang, Q., Cao, H., & Ma, J. (2024). Structural Reliability Analysis Using Stochastic Finite Element Method Based on Krylov Subspace. Algorithms, 17(10), 424. https://doi.org/10.3390/a17100424