Convergence and Stability of a New Parametric Class of Iterative Processes for Nonlinear Systems
Abstract
:1. Introduction
Multidimensional Real Dynamics Concepts
- (a)
- If all eigenvalues verify that , then is an attracting point.
- (b)
- If an eigenvalue is such that , then is unstable, that is, repulsor or saddle.
- (c)
- If all eigenvalues verify that , then is a repulsive point.
2. Family ACTV for Nonlinear Systems
Convergence Analysis
3. Stability Analysis
- (a)
- If or , there are two real roots of , denoted by . Fixed points where , are repulsive points. However, if any of , , then they are saddle points.
- (b)
- has no strange fixed points for .
4. Bifurcation Analysis of Free Critical Points
- (a)
- If , there not exist free critical points.
- (b)
- If , then two real roots of polynomial are components of the free critical point.
4.1. Parameter Line and Bifurcation Plane
4.2. Dynamical Planes
- ,
- ,
- ,
5. Numerical Results
- (1)
- , .
- (2)
- , .
- (3)
- , .
- (4)
- , .
- (5)
- , , .
- k is the number of iterations performed (“-” appears if there is no convergence or it exceeds the maximum number of iterations allowed).
- is the obtained solution.
- is the approximated computational order of convergence, ACOC, defined in [16](if the value of for the last iterations is not stable, then “-” appears in the table).
- is the norm of the difference between the two last iterations, .
- is the norm of function F evaluated in the last iteration, . (If the error estimates are very far from zero or we get NAN, infinity, then we will place “-” ).
- (i)
- ;
- (ii)
- ;
- (iii)
- 100 iterations.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Artidiello, S. Design, Implementation and Convergence of Iterative Methods for Solving Nonlinear Equations and Systems Using Weight Functions. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2014. [Google Scholar]
- Cordero, A.; Moscoso, M.E.; Torregrosa, J.R. Chaos and Stability of in a New Iterative Family far Solving Nonlinear Equations. Algorithms 2021, 14, 101. [Google Scholar] [CrossRef]
- Cordero, A.; Hueso, J.L.; Torregosa, J.R. Increasing the convergence order of an iterative method for nonlinear systems. Appl. Math. Lett. 2012, 25, 2369–2374. [Google Scholar] [CrossRef] [Green Version]
- Cordero, A.; Hueso, J.L.; Martínez, E.; Torregrosa, J.R. A modified Newton-Jarrat composition. Numer. Algorithms 2010, 55, 87–99. [Google Scholar] [CrossRef]
- Behl, R.; Sarría, Í.; González, R.; Magreñán, Á.A. Highly efficient family of iterative methods for solving nonlinear models. J. Comput. Appl. Math. 2019, 346, 110–132. [Google Scholar] [CrossRef]
- Capdevila, R.; Cordero, A.; Torregrosa, J. A New Three-Step Class of Iterative Methods for Solving Nonlinear Systems. Mathematics 2019, 7, 121. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.Y.; Yin, H.W. Increasing the order of convergence for iterative methods to solve nonlinear systems. Calcolo 2016, 53, 285–300. [Google Scholar] [CrossRef]
- Clark, R.R. An Introduction to Dynamical Systems, Continous and Discrete; Americal Mathematical Society: Providence, RI, USA, 2012. [Google Scholar]
- Geum, Y.H.; Kim, Y.I.; Neta, B. A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points. Appl. Math. Comput. 2016, 283, 120–140. [Google Scholar] [CrossRef] [Green Version]
- Devaney, R.L. An Introduction to Chaotic Dynamical Systems Advances in Mathematics and Engineering; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Gaston, J. Mémoire sur l’iteration des fonctions rationnelles. J. Mat. Pur. Appl. 1918, 8, 47–245. [Google Scholar]
- Fatou, P.J.L. Sur les équations fonctionelles. Bull. Soc. Mat. Fr. 1919, 47, 161–271. [Google Scholar] [CrossRef] [Green Version]
- Fatou, P.J.L. Sur les équations fonctionelles. Bull. Soc. Mat. Fr. 1920, 48, 208–314. [Google Scholar] [CrossRef] [Green Version]
- Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press: Cambridge, MA, USA, 1970. [Google Scholar]
- Traub, I.F. Iterative Methods for the Solution of Equations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Cordero, A.; Torregrosa, J.R. Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 2007, 190, 686–698. [Google Scholar] [CrossRef]
Method | Complexity C |
---|---|
Newton | |
ACTV |
Iterative Method | k | Cpu-Time | ||||
---|---|---|---|---|---|---|
4 | 6.0038 | 0 | 3.5022 | |||
4 | 6.0001 | 0 | 3.5053 | |||
4 | 5.883 | 3.8991 | ||||
4 | 5.874 | 3.4959 | ||||
Newton | 9 | 2.0000 | 1.2855 | |||
4 | 6.0011 | 0 | 1.6573 | |||
4 | 6.0011 | 0 | 1.5505 | |||
4 | 6.004 | 0 | 1.7605 | |||
4 | 6.0008 | 0 | 1.5495 | |||
4 | 6.0101 | 0 | 3.6422 | |||
4 | 6.0000 | 0 | 3.5589 | |||
4 | 6.159 | 3.9764 | ||||
4 | 6.0026 | 0 | 1.6411 |
Iterative Method | k | Cpu-Time | ||||
---|---|---|---|---|---|---|
4 | 6.0096 | 0 | 6.4105 | |||
4 | 6.0214 | 0 | 6.1329 | |||
4 | 6.0161 | 0 | 6.2416 | |||
4 | 6.0162 | 0 | 6.0655 | |||
Newton | 8 | 2.0004 | 1.4579 | |||
4 | 5.995 | 0 | 2.4032 | |||
4 | 6.0076 | 0 | 2.1022 | |||
4 | 6.007 | 0 | 2.3387 | |||
4 | 5.9824 | 0 | 2.2433 | |||
4 | 6.0048 | 0 | 5.7749 | |||
4 | 5.9613 | 0 | 6.0901 | |||
4 | 5.9973 | 7.0308 | ||||
4 | 6.0019 | 0 | 2.5955 |
Iterative Method | k | Cpu-Time | ||||
---|---|---|---|---|---|---|
10 | 5.9096 | 8.2697 | ||||
79 | 6.0503 | 0 | 65.9107 | |||
- | - | - | - | - | - | |
- | - | - | - | - | - | |
Newton | - | - | - | - | - | - |
- | - | - | - | - | - | |
- | - | - | - | - | - | |
6 | 5.9119 | 2.4022 | ||||
- | - | - | - | - | - | |
- | - | - | - | - | - | |
- | - | - | - | - | - | |
26 | 5.994 | 0 | 26.0787 | |||
- | - | - | - | - | - |
Iterative Method | k | Cpu-Time | ||||
---|---|---|---|---|---|---|
4 | 6.0917 | 0 | 9.0684 | |||
4 | 7.0212 | 0 | 9.1124 | |||
4 | 4.7204 | 8.6135 | ||||
4 | 4.3741 | 8.8727 | ||||
Newton | 9 | 2.0083 | 2.0165 | |||
4 | 6.3232 | 0 | 2.5118 | |||
4 | 6.2666 | 0 | 2.4156 | |||
4 | 6.3173 | 0 | 2.4766 | |||
4 | 6.2481 | 0 | 2.3827 | |||
4 | 5.7907 | 8.5868 | ||||
4 | 7.0301 | 0 | 8.7981 | |||
4 | 4.726 | 8.9312 | ||||
4 | 6.3144 | 0 | 2.5340 |
Iterative Method | k | Cpu-Time | ||||
---|---|---|---|---|---|---|
5 | 6.000 | 0 | 427.4885 | |||
5 | 5.9965 | 0 | 411.3637 | |||
7 | 6.0011 | 0 | 625.0273 | |||
16 | 6.000 | 0 | 1367.1656 | |||
Newton | 11 | 2.000 | 24.0160 | |||
5 | 5.9999 | 0 | 42.2095 | |||
5 | 6.000 | 0 | 35.5499 | |||
5 | 5.9999 | 0 | 45.1993 | |||
5 | 6.000 | 0 | 40.3692 | |||
5 | 5.9991 | 0 | 482.4615 | |||
5 | 5.9627 | 0 | 598.1063 | |||
5 | 5.9723 | 593.7798 | ||||
5 | 5.9999 | 0 | 59.5617 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cordero, A.; G. Maimó, J.; Rodríguez-Cabral, A.; Torregrosa, J.R. Convergence and Stability of a New Parametric Class of Iterative Processes for Nonlinear Systems. Algorithms 2023, 16, 163. https://doi.org/10.3390/a16030163
Cordero A, G. Maimó J, Rodríguez-Cabral A, Torregrosa JR. Convergence and Stability of a New Parametric Class of Iterative Processes for Nonlinear Systems. Algorithms. 2023; 16(3):163. https://doi.org/10.3390/a16030163
Chicago/Turabian StyleCordero, Alicia, Javier G. Maimó, Antmel Rodríguez-Cabral, and Juan R. Torregrosa. 2023. "Convergence and Stability of a New Parametric Class of Iterative Processes for Nonlinear Systems" Algorithms 16, no. 3: 163. https://doi.org/10.3390/a16030163
APA StyleCordero, A., G. Maimó, J., Rodríguez-Cabral, A., & Torregrosa, J. R. (2023). Convergence and Stability of a New Parametric Class of Iterative Processes for Nonlinear Systems. Algorithms, 16(3), 163. https://doi.org/10.3390/a16030163