CUDA and OpenMp Implementation of Boolean Matrix Product with Applications in Visual SLAM
Abstract
1. Introduction
2. Prior Works
3. Review of the Transformation
4. The New Ultrametricity Measure
5. Ultrametric-PAM and Ultrametric-FABMAP
Algorithm 1: Ultrametric-PAM) Runs PAM with the transformed distance matrices |
Input: Euclidean distance matrix A Output: matrix of a dendrogram
|
Algorithm 2 AVX-256 Transformation |
|
Algorithm 3 CUDA-TRANSFORMATION |
|
Algorithm 4 (Ultrametric-FABMAP). Runs FABMAP with the transformed distance matrices |
Input: Euclidean distance matrix A, Training, Testing Dataset Output: confusion matrix
|
6. Experiments
6.1. Metrics
6.2. Definition and Examples:
6.3. Datasets
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Simovici, D.; Hua, K. Data Ultrametricity and Clusterability. J. Phys. Conf. Ser. 2020, 1334, 012002. [Google Scholar] [CrossRef]
- Tan, Y. On the powers of matrices over a distributive lattice. Linear Algebra Its Appl. 2001, 336, 1–14. [Google Scholar] [CrossRef]
- Tan, Y.J. On the transitive matrices over distributive lattices. Linear Algebra Its Appl. 2005, 400, 169–191. [Google Scholar] [CrossRef]
- Murtagh, F. Sparse p-adic data coding for computationally efficient and effective big data analytics. P-Adic Numbers Ultrametric Anal. Appl. 2016, 8, 27–42. [Google Scholar] [CrossRef][Green Version]
- Bradley, P.E.; Keller, S.; Weinmann, M. Unsupervised Feature Selection Based on Ultrametricity and Sparse Training Data: A Case Study for the Classification of High-Dimensional Hyperspectral Data. Remote Sens. 2018, 10, 1564. [Google Scholar] [CrossRef]
- Murtagh, F. Identifying and Exploiting Ultrametricity. In Proceedings of the Advances in Data Analysis, Proceedings of the 30th Annual Conference of the Gesellschaft für Klassifikation e.V., Freie Universität Berlin, 8–10 March 2006; Decker, R., Lenz, H., Eds.; Springer: New York, NY, USA, 2006; pp. 263–272. [Google Scholar] [CrossRef]
- Murtagh, F.; Contreras, P. The Future of Search and Discovery in Big Data Analytics: Ultrametric Information Spaces. arXiv 2012, arXiv:1202.3451. [Google Scholar] [CrossRef]
- Kaufman, L.; Rousseeuw, P. Finding Groups in Data: An Introduction to Cluster Analysis; John Wiley: New York, NY, USA, 2009. [Google Scholar]
- K-Medoids. Available online: https://en.wikipedia.org/wiki/K-medoids (accessed on 10 December 2022).
- K-Medoids Clustering with Solved Example. Available online: https://www.geeksforgeeks.org/ml-k-medoids-clustering-with-example/ (accessed on 10 December 2022).
- Cummins, M.J.; Newman, P. FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance. Int. J. Robot. Res. 2008, 27, 647–665. [Google Scholar] [CrossRef]
- Glover, A.; Maddern, W.; Warren, M.; Reid, S.; Milford, M.; Wyeth, G. OpenFABMAP: An Open Source Toolbox for Appearance-based Loop Closure Detection. In Proceedings of the International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; IEEE: St. Paul, MN, USA, 2012. [Google Scholar]
- Rammal, R.; Anglès D’Auriac, J.C.; Douçot, B. On the degree of ultrametricity. J. Phys. Lett. 1985, 46, 945–952. [Google Scholar] [CrossRef]
- Cattaneo, D.; Vaghi, M.; Valada, A. LCDNet: Deep Loop Closure Detection for LiDAR SLAM based on Unbalanced Optimal Transport. arXiv 2021, arXiv:2103.05056. [Google Scholar]
- Lu, S.; Xu, X.; Tang, L.; Xiong, R.; Wang, Y. DeepRING: Learning Roto-translation Invariant Representation for LiDAR based Place Recognition. arXiv 2022, arXiv:2210.11029. [Google Scholar]
- Zarringhalam, A.; Ghidary, S.S.; Khorasani, A.M. Self-supervised Vector-Quantization in Visual SLAM using Deep Convolutional Autoencoders. arXiv 2022, arXiv:2207.06732. [Google Scholar]
- Zarringhalam, A.; Ghidary, S.S.; Khorasani, A.M. Semi-supervised Vector-Quantization in Visual SLAM using HGCN. arXiv 2022, arXiv:2207.06738. [Google Scholar]
- Murtagh, F.; Downs, G.; Contreras, P. Hierarchical Clustering of Massive, High Dimensional Data Sets by Exploiting Ultrametric Embedding. SIAM J. Sci. Comput. 2008, 30, 707–730. [Google Scholar] [CrossRef]
- Gillet, V.J.; Wild, D.J.; Willett, P.; Bradshaw, J. Similarity and Dissimilarity Methods for Processing Chemical Structure Databases. Comput. J. 1998, 41, 547–558. [Google Scholar] [CrossRef]
- Brown, R.D.; Martin, Y.C. Use of Structure–Activity Data To Compare Structure-Based Clustering Methods and Descriptors for Use in Compound Selection. J. Chem. Inf. Comput. Sci. 1996, 36, 572–584. [Google Scholar] [CrossRef]
- Downs, G.M.; Willett, P.; Fisanick, W. Similarity Searching and Clustering of Chemical-Structure Databases Using Molecular Property Data. J. Chem. Inf. Comput. Sci. 1994, 34, 1094–1102. [Google Scholar] [CrossRef]
- Rammal, R.; Anglès D’Auriac, J.C.; Douçot, B. Several Remarks on Dissimilarities and Ultrametrics. Sci. Ann. Comput. Sci. 2015, 25, 155–170. [Google Scholar]
Compactness Avg. | Compactness Ratio Avg. | Dunn Index | Dunn Index Ratio | |
---|---|---|---|---|
0.4826358111 | 1.0163461701 | 0.0246030 | 0.7697904 | |
0.4663649138 | 0.9820825208 | 0.04667035 | 1.460238898 | |
0.4799552411 | 1.0107013609 | 0.0418983 | 1.310931155 | |
0.5017430685 | 1.056582695 | 0.047757 | 1.494265365 | |
0.5400191638 | 1.1371854226 | 0.1781176 | 5.5730085 | |
0.8553148705 | 1.8164010431 | 043437224 | 13.5907955 |
Compactness Avg. | Compactness Ratio Avg. | Dunn Index | Dunn Index Ratio | |
---|---|---|---|---|
0.456225532 | 1 | 0.01110 | 1 | |
0.499903924 | 1.095738596 | 0.042091 | 3.7914944142 | |
0.60707534 | 1.330647448 | 0.169928 | 15.3067877 | |
0.286708931 | 0.628436839 | 1.7971900 | 161.88682261 |
Compactness Avg. | Compactness Ratio Avg. | Dunn Index | Dunn Index Ratio | |
---|---|---|---|---|
0.258152 | 1 | 0.09880 | 1 | |
0.287839 | 1.114996 | 0.14560 | 1.47364530 | |
0.317521 | 1.229975 | 0.138675 | 1.4034885859 | |
0.34202 | 1.324878 | 0.46684 | 4.7248466 |
Compactness Avg. | Compactness Ratio Avg. | Dunn Index | Dunn Index Ratio | |
---|---|---|---|---|
0.339115 | 1 | 0.049510 | 1 | |
0.570942 | 1.683624 | 0.312755 | 6.31701349 | |
0.67483 | 1.989974 | 0.37255 | 7.52478121 | |
0.70014 | 2.06461 | 0.429812 | 8.681313 | |
0.716623 | 2.113215 | 0.445516 | 8.9985077 |
Dataset | No, Extracted Features | Method | BoW | |
---|---|---|---|---|
Train/Test | Train/Test | — | %Acc | %Rec |
Newer College One Loop (Train) Newer College Three Loops (Test) | 11,208 | Ultrametric FABMAP | Ground Truth | Ground Truth |
Ultrametric BoW | %89.6 | %97.4 | ||
6736 | FABMAP2 | %50.3 %54.83 | %100 %90.9 | |
BoW | %59.55 %42 %96 | %81.5 %93 %86 |
Dataset | Method | Acc | Recall |
---|---|---|---|
Lip6 Indoor | Ultrametric Bow | %68.11 %57 | %66 %87 |
Dataset | No, Extracted Features | Method | Acc | Recall |
---|---|---|---|---|
Train/Test | Train/Test | ______ | ___ | _____ |
Newer College One Loop (Train) Newer College Three loops (Test) | 11,208 | Ultrametric FABMAP | %57 %62 %66.1 | %93 %84 %81.66 |
Ultrametric BoW | Ground Truth | Ground Truth | ||
6736 | FABMAP2 | %51 %61 | %92.9 %83 | |
BoW | %63 | %100 |
Dataset-Size | Method | Time | Speedup |
---|---|---|---|
6736 × 6736 | AVX-256 | 1 min 6 s | 1.51 |
6736 × 6736 | GPU | 1 min 39 s | 1. |
Dataset-Size | PAM | Ultrametric-PAM | Speedup |
---|---|---|---|
6736 × 6736 | 3.5 days | 18 min | ×280 |
11,712 × 11,712 | 14 days | 2 h and 23 min | ×1254. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarringhalam, A.; Shiry Ghidary, S.; Mohades, A.; Sadegh-Zadeh, S.-A. CUDA and OpenMp Implementation of Boolean Matrix Product with Applications in Visual SLAM. Algorithms 2023, 16, 74. https://doi.org/10.3390/a16020074
Zarringhalam A, Shiry Ghidary S, Mohades A, Sadegh-Zadeh S-A. CUDA and OpenMp Implementation of Boolean Matrix Product with Applications in Visual SLAM. Algorithms. 2023; 16(2):74. https://doi.org/10.3390/a16020074
Chicago/Turabian StyleZarringhalam, Amir, Saeed Shiry Ghidary, Ali Mohades, and Seyed-Ali Sadegh-Zadeh. 2023. "CUDA and OpenMp Implementation of Boolean Matrix Product with Applications in Visual SLAM" Algorithms 16, no. 2: 74. https://doi.org/10.3390/a16020074
APA StyleZarringhalam, A., Shiry Ghidary, S., Mohades, A., & Sadegh-Zadeh, S.-A. (2023). CUDA and OpenMp Implementation of Boolean Matrix Product with Applications in Visual SLAM. Algorithms, 16(2), 74. https://doi.org/10.3390/a16020074