Compressed Communication Complexity of Hamming Distance
Abstract
:1. Introduction
- (i)
- communication rounds and total bits of communication, or
- (ii)
- communication rounds and total bits of communication,
2. Preliminaries
2.1. Strings
2.2. Lempel-Ziv 77 Factorizations
2.3. Communication Complexity Model
- The parties are Alice and Bob;
- The problem is a function for arbitrary sets ;
- Alice has instance and Bob has instance ;
- The goal of the two parties is to output for a pair of instances by a joint computation;
- The joint computation (i.e., the communication between Alice and Bob) follows a specified protocol .
2.4. Joint Computation of Compressed String Problems
3. Compressed Communication Complexity of Hamming Distance
3.1. On the Sizes of Non-Self-Referencing LZ77 Factorization of Suffixes
3.1.1. Lower Bound for
3.1.2. Upper Bound for
3.2. Compressed Communication Complexity of Hamming Distance
4. Conclusions and Open Questions
Author Contributions
Funding
Conflicts of Interest
References
- Yao, A.C. Some Complexity Questions Related to Distributive Computing (Preliminary Report). In Proceedings of the Eleventh Annual ACM-SIAM Symposium onTheory of computing, Atlanta, Georgia, 30 April –2 May 1979; pp. 209–213. [Google Scholar]
- Clifford, R.; Jalsenius, M.; Porat, E.; Sach, B. Space lower bounds for online pattern matching. Theor. Comput. Sci. 2013, 483, 68–74. [Google Scholar] [CrossRef]
- Radoszewski, J.; Starikovskaya, T. Streaming k-mismatch with error correcting and applications. Inf. Comput. 2020, 271, 104513. [Google Scholar] [CrossRef]
- Jalsenius, M.; Porat, B.; Sach, B. Parameterized Matching in the Streaming Model. STACS 2013, 400–411. [Google Scholar] [CrossRef]
- Gawrychowski, P.; Starikovskaya, T. Streaming Dictionary Matching with Mismatches. In Proceedings of the 30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019), Pisa, Italy, 18–20 June 2019; pp. 21:5–21:15. [Google Scholar]
- Gawrychowski, P.; Radoszewski, J.; Starikovskaya, T. Quasi-Periodicity in Streams. In Proceedings of the 30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019), Pisa, Italy, 18–20 June 2019; pp. 22:1–22:14. [Google Scholar]
- Bille, P.; Ettienne, M.B.; Grossi, R.; Gørtz, I.L.; Rotenberg, E. Compressed Communication Complexity of Longest Common Prefixes. In International Symposium on String Processing and Information Retrieval, Proceedings of the 25th International Symposium, SPIRE 2018, Lima, Peru, 9–11 October 2018; Springer: Cham, Switzerland, 2018; pp. 74–87. [Google Scholar]
- Ziv, J.; Lempel, A. A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 1977, 23, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Crochemore, M. Linear searching for a square in a word. Bull. Eur. Assoc. Theor. Comput. Sci. 1984, 24, 66–72. [Google Scholar]
- Rytter, W. Application of Lempel-Ziv factorization to the approximation of grammar-based compression. Theor. Comput. Sci. 2003, 302, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Lagarde, G.; Perifel, S. Lempel-Ziv: A “one-bit catastrophe” but not a tragedy. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, USA, 7–10 January 2018; pp. 1478–1495. [Google Scholar]
- Ziv, J.; Lempel, A. Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 1978, 24, 530–536. [Google Scholar] [CrossRef] [Green Version]
- Kociumaka, T.; Navarro, G.; Prezza, N. Towards a Definitive Measure of Repetitiveness. In Latin American Symposium on Theoretical Informatics, Proceedings of the 14th Latin American Symposium, São Paulo, Brazil, 5–8 January 2020; Springer: Cham, Switzerland, 2020; pp. 207–219. [Google Scholar]
- Storer, J.A.; Szymanski, T.G. Data compression via textual substitution. J. ACM 1982, 29, 928–951. [Google Scholar] [CrossRef]
- Kempa, D.; Prezza, N. At the roots of dictionary compression: string attractors. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, Los Angeles, CA, USA, 25–29 June 2018; pp. 827–840. [Google Scholar]
- Mantaci, S.; Restivo, A.; Romana, G.; Rosone, G.; Sciortino, M. A combinatorial view on string attractors. Theor. Comput. Sci. 2021, 850, 236–248. [Google Scholar] [CrossRef]
- Adelson-Velskii, G.; Landis, E. An algorithm for the organization of information. Sov. Math. Dokl. 1962, 3, 1259–1263. [Google Scholar]
- Knuth, D.E. The Art of Computer Programming, 2nd ed.; Addison-Wesley: Boston, MA, USA, 1998; Volume III. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitsuya, S.; Nakashima, Y.; Inenaga, S.; Bannai, H.; Takeda, M. Compressed Communication Complexity of Hamming Distance. Algorithms 2021, 14, 116. https://doi.org/10.3390/a14040116
Mitsuya S, Nakashima Y, Inenaga S, Bannai H, Takeda M. Compressed Communication Complexity of Hamming Distance. Algorithms. 2021; 14(4):116. https://doi.org/10.3390/a14040116
Chicago/Turabian StyleMitsuya, Shiori, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. 2021. "Compressed Communication Complexity of Hamming Distance" Algorithms 14, no. 4: 116. https://doi.org/10.3390/a14040116
APA StyleMitsuya, S., Nakashima, Y., Inenaga, S., Bannai, H., & Takeda, M. (2021). Compressed Communication Complexity of Hamming Distance. Algorithms, 14(4), 116. https://doi.org/10.3390/a14040116