Identifying and Ranking Influential Nodes in Complex Networks Based on Dynamic Node Strength
Abstract
1. Introduction
2. Methods
3. Experimental Results
3.1. Evaluation Methodologies
3.2. Applications to the Real Networks
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Buldyrev, S.V.; Roni, P.; Gerald, P.; H Eugene, S.; Shlomo, H. Catastrophic Cascade of Failures in Interdependent Networks. Nature 2010, 464, 1025. [Google Scholar] [CrossRef]
- Fath, B.D.; Scharler, U.M.; Ulanowicz, R.E.; Hannon, B. Ecological network analysis: Network construction. Ecol. Model. 2017, 208, 49–55. [Google Scholar] [CrossRef]
- Marigo, A.; Piccoli, B. A model for biological dynamic networks. Netw. Heterog. Media 2017, 6, 647–663. [Google Scholar] [CrossRef]
- Guo, Q.T.; Lei, Y.J.; Jiang, X.; Ma, Y.F.; Huo, G.Y.; Zheng, Z.M. Epidemic spreading with activity-driven awareness diffusion on multiplex network. Chaos 2016, 26, 043110. [Google Scholar] [CrossRef]
- Zhang, J.X.; Chen, D.B.; Wang, G.; Xing, G. Ranking the spreading ability of nodes in complex networks based on local structure. Phys. Stat. Mech. Its Appl. 2014, 403, 130–147. [Google Scholar]
- Li, C.; Wang, L.; Sun, S.; Xia, C. Identification of influential spreaders based on classified neighbors in real-world complex networks. Appl. Math. Comput. 2017, 320, 512–523. [Google Scholar] [CrossRef]
- Li, J.; Xiong, Q.; Shi, W.; Shi, X.; Wang, K. Evaluating the importance of nodes in complex networks. Phys. Stat. Mech. Its Appl. 2016, 452, 209–219. [Google Scholar] [CrossRef]
- Al-Garadi, M.A.; Varathan, K.D.; Ravana, S.D.; Ahmed, E.; Chang, V.; Lv, Z. Identifying the influential spreaders in multilayer interactions of online social networks. J. Intell. Fuzzy Syst. 2016, 31, 2721–2735. [Google Scholar] [CrossRef]
- Xia, Y.; Ren, X.; Peng, Z.; Zhang, J.; She, L. Effectively identifying the influential spreaders in large-scale social networks. Multimed. Tools Appl. 2016, 75, 8829–8841. [Google Scholar] [CrossRef]
- Gomez, S.; Diaz-Guilera, A.; Gomez-Gardenes, J.; Perez-Vicente, C.J.; Moreno, Y.; Arenas, A. Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 2013, 110, 028701. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.B.; Sun, H.L.; Tang, Q. Identifying influential spreaders in complex networks by propagation probability dynamics. Chaos 2019, 29, 033120. [Google Scholar] [CrossRef] [PubMed]
- Sabidussi, G. The centrality index of a graph. Psychometrika 1966, 31, 581–603. [Google Scholar] [CrossRef]
- Newman, M.E.J. A measure of betweenness centrality based on random walks. Soc. Netw. 2005, 27, 39–54. [Google Scholar] [CrossRef]
- Burt, R.S. Applied Network Analysis. Sociol. Methods Res. 1978, 7, 123–130. [Google Scholar] [CrossRef]
- Katz, L. A new status index derived from sociometric analysis. Psychometrika 1953, 18, 39–43. [Google Scholar] [CrossRef]
- Lü, L.; Zhang, Y.C.; Yeung, C.H.; Zhou, T. Leaders in Social Networks, the Delicious Case. PLoS ONE 2011, 6, 21202. [Google Scholar] [CrossRef]
- Ding, Y.; Yan, E.; Frazho, A.; Caverlee, J. PageRank for ranking authors in co-citation networks. J. Am. Soc. Inf. Sci. Technol. 2014, 60, 2229–2243. [Google Scholar] [CrossRef]
- Chen, D.B.; Lü, L.Y.; Shang, M.S. Identifying influential nodes in complex networks. Phys. Stat. Mech. Its Appl. 2012, 391. [Google Scholar] [CrossRef]
- Hu, J.; Du, Y.; Mo, H.; Wei, D.; Deng, Y. A modified weighted topsis to identify influential nodes in complex networks. Phys. Stat. Mech. Its Appl. 2016, 444, 73–85. [Google Scholar] [CrossRef]
- Du, Y.X.; Gao, C.; Hu, Y.; Mahadevan, S.; Deng, Y. A new method of identifying influential nodes in complex networks based on topsis. Phys. Stat. Mech. Its Appl. 2014, 399, 57–69. [Google Scholar] [CrossRef]
- Sara, A.; Hassan, B. Identification of influential spreaders in complex networks using HybridRank algorithm. Sci. Rep. 2018, 8, 11932. [Google Scholar]
- Kitsak, L.K.; Gallos, S.; Havlin, F.; Liljeros, L.; Muchnik, H.E.; Stanley, H.A.; Makse. Identification of influential spreaders in complex. Nat. Phys. 2010, 6, 888–893. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, M.; Zhou, T.; Do, Y.H. Identify influential spreaders in complex networks, the role of neighborhood. Phys. Stat. Mech. Its Appl. 2016, 289–298. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Huang, B.; Tang, M. Identifying effective multiple spreaders by coloring complex networks. Epl 2014, 108, 68005. [Google Scholar] [CrossRef]
- Zeng, A.; Zhang, C.J. Ranking spreaders by decomposing complex networks. Phys. Lett. A 2012, 377, 1031–1035. [Google Scholar] [CrossRef]
- Joonhyun, B.; Sangwook. Identifying and ranking influential spreaders in complex networks by neighborhood coreness. Phys. Stat. Mech. Its Appl. 2014, 395, 549–559. [Google Scholar]
- Liu, J.G.; Ren, Z.M.; Guo, Q. Ranking the spreading influence in complex networks. Phys. Stat. Mech. Its Appl. 2013, 392, 4154–4159. [Google Scholar] [CrossRef]
- Wang, Z.; Du, C.; Fan, J.; Xing, Y. Ranking Influential Nodes in Social Networks Based on Node Position and Neighborhood. Neurocomputing 2017, 10, 466–477. [Google Scholar] [CrossRef]
- Byungjoon, M. Identifying an influential spreader from a single seed in complex networks via a message-passing approach. Eur. Phys. J. B 2018, 91, 18. [Google Scholar]
- Maji, G. Influential spreaders identification in complex networks with potential edge weight based k-shell degree neighborhood method. J. Comput. Sci. 2020, 39, 101055.1–101055.9. [Google Scholar] [CrossRef]
- De Arruda, G.F.; Barbieri, A.L.; Rodriguez, P.M.; Moreno, Y.; Costa, L.D.F.; Rodrigues, F.A. Role of centrality for the identification of influential spreaders in complex networks. Phys. Rev. E Stat. Nonlin Soft. Matter. Phys. 2014, 90, 032812. [Google Scholar] [CrossRef]
- Li, M.; Zhang, R.; Hu, R.; Yang, F.; Yao, Y.; Yuan, Y. Identifying and ranking influential spreaders in complex networks by combining a local-degree sum and the clustering coefficient. Int. J. Mod. Phys. B 2018, 32, 1850118. [Google Scholar] [CrossRef]
- Zachary, W.W. An information flow model for conflict and fission in small groups. J. Anthropol. Res. 1977, 33, 452–473. [Google Scholar] [CrossRef]
- Paranjape, A.; Benson, A.R.; Leskovec, J. Motifs in Temporal Networks. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, Cambridge, UK, 6–10 February 2017; Volume 33. [Google Scholar]
- Newman, M.E.J. Finding community structure in networks using the eigenvectors of matrices. Prepr. Phys. 2006, 74, 0605087. [Google Scholar] [CrossRef] [PubMed]
- Rossi, R.A.; Ahmed, N.K. The Network Data Repository with Interactive Graph Analytics and Visualization. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015. [Google Scholar]
- Saeedian, M.; Khalighi, M.; Azimi-Tafreshi, N.; Jafari, G.R.; Ausloos, M. Memory effects on epidemic evolution: The susceptible-infected-recovered epidemic model. Phys. Rev. 2017, 95, 022409. [Google Scholar] [CrossRef] [PubMed]
- Omata, K. Nonequilibrium statistical mechanics of a susceptible-infected-recovered epidemic model. Phys. Rev. 2017, 96, 022404. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Q.H.; Zhong, L.F.; Tang, M.; Gao, H.; Stanley, H.E. Predicting the epidemic threshold of the susceptible-infected-recovered model. Sci. Rep. 2016, 6, 24676. [Google Scholar] [CrossRef]
- Miller, J.C.; Kiss, I.Z. Epidemic Spread in Networks: Existing Methods and Current Challenges. Math. Model. Nat. Phenom. 2014, 9, 4–42. [Google Scholar] [CrossRef]
- Kendall, M.G. The treatment of ties in ranking problems. Biometrika 1945, 33, 239–251. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Wang, X.F.; Zhang, W.W.; Zhang, Z.L. A Community-Based Approach to Identifying Influential Spreaders. Entropy 2015, 17, 2228–2252. [Google Scholar] [CrossRef]
- Girvan, M.; Newman, M.E.J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Zhao, X.; Ge, B. An efficient algorithm for mining a set of influential spreaders in complex networks. Phys. A Stat. Mech. Its Appl. 2019, 516, 58–65. [Google Scholar] [CrossRef]
- Yang, X.; Huang, D.C.; Zhang, Z.K. Neighborhood coreness algorithm for identifying a set of influential spreaders in complex networks. KSII Trans. Internet Inf. Syst. 2017, 11, 2979–2995. [Google Scholar]
Rank | DC | k-shell | MDD | DNSD | ||
---|---|---|---|---|---|---|
1 | 2,7,8 | 1,2, | 1,2,3, | 2 | 1 | 2 |
3,4 | 4,7,8 | |||||
2 | 4 | 5,6,7 | 5,6,10, | 3,4 | 4 | 3 |
11,22 | ||||||
3 | 1,3 | others | 19,21 | 1 | 7 | 1 |
4 | 11,22 | others | 7 | 2 | 4 | |
5 | 5,6,10, | 8 | 3 | 7 | ||
19,21 | ||||||
6 | others | 5,6 | 8 | 8 | ||
7 | 22 | 22 | 22 | |||
8 | 11,23 | 5,6 | 5,6 | |||
9 | 14,15,16, | 10 | 10 | |||
17,10,19,21 | ||||||
10 | others | 11 | 14,15, | |||
16,17 | ||||||
11 | 9,14,15, | 23 | ||||
16,17,24, | ||||||
25,26 | ||||||
12 | 19,21 | 9,24, | ||||
25,26 | ||||||
>12 | others | others |
Networks | N | E | M(DC) | M(k-Shell) | M(MDD) | M() | M(DNSD) | M() |
---|---|---|---|---|---|---|---|---|
Karate Club | 34 | 78 | 0.708 | 0.496 | 0.708 | 0.839 | 0.954 | 0.954 |
162 | 1772 | 0.922 | 0.776 | 0.916 | 0.987 | 0.995 | 0.998 | |
Co-authors | 1589 | 2742 | 0.707 | 0.663 | 0.709 | 0.844 | 0.904 | 0.915 |
Power Grid | 3706 | 6594 | 0.593 | 0.246 | 0.587 | 0.740 | 0.920 | 0.984 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Sun, Q. Identifying and Ranking Influential Nodes in Complex Networks Based on Dynamic Node Strength. Algorithms 2021, 14, 82. https://doi.org/10.3390/a14030082
Li X, Sun Q. Identifying and Ranking Influential Nodes in Complex Networks Based on Dynamic Node Strength. Algorithms. 2021; 14(3):82. https://doi.org/10.3390/a14030082
Chicago/Turabian StyleLi, Xu, and Qiming Sun. 2021. "Identifying and Ranking Influential Nodes in Complex Networks Based on Dynamic Node Strength" Algorithms 14, no. 3: 82. https://doi.org/10.3390/a14030082
APA StyleLi, X., & Sun, Q. (2021). Identifying and Ranking Influential Nodes in Complex Networks Based on Dynamic Node Strength. Algorithms, 14(3), 82. https://doi.org/10.3390/a14030082