Local Comparison between Two Ninth Convergence Order Algorithms for Equations
Abstract
:1. Introduction
2. Ball Convergence
- (A1)
- is continuously differentiable and there exists a simple solution of equation with being invertible.
- (A2)
- There exists a continuous and increasing function from S into itself with such that for allSet
- (A3)
- There exist continuous and increasing functions from into S with such that for eachSet
- (A4)
- There exists a continuous function from into S such that for all
- (A5)
- where R is defined in (8), and exist.
- (A6)
- There exists such thatSet
3. Numerical Examples
Author Contributions
Funding
Conflicts of Interest
References
- Aizenshtein, M.; Bartoŕi, M.; Elber, G. Global solutions of well-constrained transcendental systems using expression trees and a single solution test. Comput. Aided Des. 2012, 29, 265–279. [Google Scholar] [CrossRef]
- Amat, S.; Argyros, I.K.; Busquier, S.; Magreñán, A.A. Local convergence and the dynamics of a two-point four parameter Jarratt-like method under weak conditions. Numer. Algorithms 2017. [Google Scholar] [CrossRef]
- Argyros, I.K.; Magreñán, A.A. Iterative Methods and Their Dynamics with Applications; CRC Press: New York, NY, USA, 2017. [Google Scholar]
- Van Sosin, B.; Elber, G. Solving piecewise polynomial constraint systems with decomposition and a subdivision-based solver. Comput. Aided Des. 2017, 90, 37–47. [Google Scholar] [CrossRef]
- Argyros, I.K. Computational Theory of Iterative Methods; Series: Studies in Computational Mathematics, 15; Chui, C.K., Wuytack, L., Eds.; Elsevier: New York, NY, USA, 2007. [Google Scholar]
- Argyros, I.K.; Magreñán, A.A. A study on the local convergence and the dynamics of Chebyshev-Halley-type methods free from second derivative. Numer. Algorithms 2015, 71, 1–23. [Google Scholar] [CrossRef]
- Alzahrani, A.K.H.; Behl, R.; Alshomrani, A.S. Some higher-order iteration functions for solving nonlinear models. Appl. Math. Comput. 2018, 334, 80–93. [Google Scholar] [CrossRef]
- Bartoň, M. Solving polynomial systems using no-root elimination blending schemes. Comput. Aided Des. 2011, 43, 1870–1878. [Google Scholar] [CrossRef]
- Behl, R.; Cordero, A.; Motsa, S.S.; Torregrosa, J.R. Stable high-order iterative methods for solving nonlinear models. Appl. Math. Comput. 2017, 303, 70–88. [Google Scholar] [CrossRef]
- Cordero, A.; Torregrosa, J.R. Variants of Newton’s method for functions of several variables. Appl. Math. Comput. 2006, 183, 199–208. [Google Scholar] [CrossRef]
- Cordero, A.; Hueso, J.L.; Martínez, E.; Torregrosa, J.R. A modified Newton-Jarratt’s composition. Numer. Algorithms 2010, 55, 87–99. [Google Scholar] [CrossRef]
- Cordero, A.; Torregrosa, J.R. Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 2007, 190, 686–698. [Google Scholar] [CrossRef]
- Cordero, A.; Hueso, J.L.; Martínez, E.; Torregrosa, J.R. Increasing the convergence order of an iterative method for nonlinear systems. Appl. Math. Lett. 2012, 25, 2369–2374. [Google Scholar] [CrossRef] [Green Version]
- Darvishi, M.T.; Barati, A. Super cubic iterative methods to solve systems of nonlinear equations. Appl. Math. Comput. 2007, 188, 1678–1685. [Google Scholar] [CrossRef]
- Esmaeili, H.; Ahmadi, M. An efficient three-step method to solve system of non linear equations. Appl. Math. Comput. 2015, 266, 1093–1101. [Google Scholar]
- Lotfi, T.; Bakhtiari, P.; Cordero, A.; Mahdiani, K.; Torregrosa, J.R. Some new efficient multipoint iterative methods for solving nonlinear systems of equations. Int. J. Comput. Math. 2015, 92, 1921–1934. [Google Scholar] [CrossRef] [Green Version]
- Magreñán, A.A. Different anomalies in a Jarratt family of iterative root finding methods. Appl. Math. Comput. 2014, 233, 29–38. [Google Scholar]
- Magreñán, A.A. A new tool to study real dynamics: The convergence plane. Appl. Math. Comput. 2014, 248, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.A.; Waseem, M. Some iterative methods for solving a system of nonlinear equations. Comput. Math. Appl. 2009, 57, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Ortega, J.M.; Rheinboldt, W.C. Iterative Solutions of Nonlinear Equations in Several Variables; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Sharma, J.R.; Arora, H. Improved Newton-like methods for solving systems of nonlinear equations. SeMA 2017, 74, 147–163. [Google Scholar] [CrossRef]
- Sharma, J.R.; Arora, H. Efficient derivative-free numerical methods for solving systems of nonlinear equations. Comput. Appl. Math. 2016, 35, 269–284. [Google Scholar] [CrossRef]
- Xiao, X.Y.; Yin, H.W. Increasing the order of convergence for iterative methods to solve nonlinear systems. Calcolo 2016, 53, 285–300. [Google Scholar] [CrossRef]
- Argyros, I.K.; George, S.; Magreñán, A.A. Local convergence for multi-point-parametric Chebyshev-Halley-type methods of higher convergence order. J. Comput. Appl. Math. 2015, 282, 215–224. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Regmi, S.; Argyros, I.K.; George, S. Local Comparison between Two Ninth Convergence Order Algorithms for Equations. Algorithms 2020, 13, 147. https://doi.org/10.3390/a13060147
Regmi S, Argyros IK, George S. Local Comparison between Two Ninth Convergence Order Algorithms for Equations. Algorithms. 2020; 13(6):147. https://doi.org/10.3390/a13060147
Chicago/Turabian StyleRegmi, Samundra, Ioannis K. Argyros, and Santhosh George. 2020. "Local Comparison between Two Ninth Convergence Order Algorithms for Equations" Algorithms 13, no. 6: 147. https://doi.org/10.3390/a13060147
APA StyleRegmi, S., Argyros, I. K., & George, S. (2020). Local Comparison between Two Ninth Convergence Order Algorithms for Equations. Algorithms, 13(6), 147. https://doi.org/10.3390/a13060147