Improved Convergence Speed of a DCD-Based Algorithm for Sparse Solutions
Abstract
:1. Introduction
2. Preliminaries
2.1. System Model
2.2. DCD Algorithms
2.2.1. Cyclic DCD Algorithm
2.2.2. Leading DCD Algorithm
2.2.3. Complexity Discussion
2.2.4. Numerical Results
3. Proposed Leading-Cyclic DCD Algorithm
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Haykin, S. Adaptive Filter Theory, 4th ed.; Prentice Hall, Inc.: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Dakulagi, V.; Bakhar, M. Advances in Smart Antenna Systems for Wireless Communication. Wirel. Pers. Commun. 2000, 110, 931–957. [Google Scholar] [CrossRef]
- Verdu, S. Multiuser Detection; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Albreem, M.A.; Juntti, M.; Shahabuddin, S. Massive MIMO detection techniques: A survey. IEEE Commun. Surv. Tutor. 2019, 21, 3109–3132. [Google Scholar] [CrossRef] [Green Version]
- Messini, M.; Djendi, M. A new adaptive filtering algorithm for stereophonic acoustic echo cancellation. Appl. Acoust. 2019, 146, 345–354. [Google Scholar] [CrossRef]
- Proakis, J.; Manolakis, D. Digital Signal Processing: Principles, Algorithms, and Applications, 2nd ed.; Macmillan: New York, NY, USA, 1992. [Google Scholar]
- Wen, H.; Yang, S.; Hong, Y.; Luo, H.A. Partial Update Adaptive Algorithm for Sparse System Identification. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 240–255. [Google Scholar] [CrossRef]
- Yazdanpanah, H.; Diniz, P.S.R.; Lima, M.V.S. Feature Adaptive Filtering: Exploiting Hidden Sparsity. IEEE Trans. Circuits Syst. Regul. Pap. Available online: http://www02.smt.ufrj.br/~diniz/papers/ri99.pdf (accessed on 3 June 2020). [CrossRef]
- Liu, J.; Grant, S.L. Proportionate Adaptive Filtering for Block-Sparse System Identification. IEEE/ACM Trans. Audio Speech Lang. Process. 2016, 24, 623–630. [Google Scholar] [CrossRef] [Green Version]
- Golub, G.H.; Van Loan, C.F. Matrix Computations, 3rd ed.; The Johns Hopkins University Press: Baltimore, MD, USA, 1996. [Google Scholar]
- Liu, J. DCD Algorithm: Architectures, FPGA Implementations and Applications. Ph.D. Thesis, University of York, York, UK, 2008. [Google Scholar]
- Cryer, C.W. The solution of a quadratic programming problem using systematic overrelaxation. SIAM J. Control 1971, 9, 385–392. [Google Scholar] [CrossRef]
- Watkins, D.J. Fundamentals of Matrix Computations; Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- Quan, Z.; Tian, T. DCD-based branch and bound detector with reduced complexity for MIMO systems. IEICE Trans. Commun. 2018, E101-B, 2230–2238. [Google Scholar] [CrossRef]
- Albu, F. Efficient multichannel filtered-x affine projection algorithm for active noise control. Electron. Lett. 2006, 42, 421–423. [Google Scholar] [CrossRef]
- Albu, F.; Bouchard, M.; Zakharov, Y. Pseudo Affine Projection Algorithms for Multichannel Active Noise Control. IEEE Trans. Audio Speech Lang. Process. 2007, 15, 1044–1052. [Google Scholar] [CrossRef] [Green Version]
- Zakharov, Y. Low complexity implementation of the affine projection algorithm. IEEE Signal Process. Lett. 2008, 15, 557–560. [Google Scholar] [CrossRef]
- Zakharov, Y.; White, G.; Liu, J. Low complexity RLS algorithms using dichotomous coordinate descent iterations. IEEE Trans. Signal Process. 2008, 56, 3150–3161. [Google Scholar] [CrossRef] [Green Version]
- Zakharov, Y.V.; Tozer, T.C. Multiplication-free iterative algorithm for LS problem. Electron. Lett. 2004, 40, 567–569. [Google Scholar] [CrossRef]
- Liu, J.; Zakharov, Y.V.; Weaver, B. Architecture and FPGA design of dichotomous coordinate descent algorithms. IEEE Trans. Circuits Syst. Regul. Pap. 2009, 56, 2425–2438. [Google Scholar]
- Cotter, S.F.; Rao, B.D. Sparse channel estimation via matching pursuit with application to equalization. IEEE Trans. Commun. 2002, 50, 374–377. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.C.; Chen, K.C. Identification of active users in synchronous CDMA multiuser detection. IEEE J. Sel. Areas Commun. 1998, 16, 1723–1735. [Google Scholar]
Step | Input , R, , , ; Output: x, | Addition |
---|---|---|
Initialization: , , , | ||
for | ||
1 | ||
2 | g = 0 | |
for | ||
3 | if | |
4 | 1 | |
5 | U | |
6 | , g = 1 | |
7 | if , execution stops | |
8 | if g = 1, repeat step 2 | |
end for | ||
complexity | adds |
Step | Input , R, , , ; output: x, | Addition |
---|---|---|
Initialization: , , , | ||
for | ||
1 | , goto step 4 | |
2 | , | |
3 | if , execution stops | |
4 | if , goto step 2 | 1 |
5 | 1 | |
6 | U | |
end for | ||
complexity | adds |
Step | Input , R, , , , ; Output: x, | |
---|---|---|
Initialization: , , , | ||
for | ||
1 | goto step 4 | |
2 | , | |
3 | if , execution stops | |
4 | if , goto step 2 | 1 |
5 | 1 | |
6 | ||
7 | end for | |
8 | for | |
9 | ||
10 | g = 0 | |
11 | for | |
12 | if | 1 |
13 | 1 | |
14 | U | |
15 | , g = 1 | |
16 | if , execution stops | |
17 | if g = 1, repeat step 10 | |
end for | ||
complexity | ||
adds |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quan, Z.; Lv, S. Improved Convergence Speed of a DCD-Based Algorithm for Sparse Solutions. Algorithms 2020, 13, 136. https://doi.org/10.3390/a13060136
Quan Z, Lv S. Improved Convergence Speed of a DCD-Based Algorithm for Sparse Solutions. Algorithms. 2020; 13(6):136. https://doi.org/10.3390/a13060136
Chicago/Turabian StyleQuan, Zhi, and Shuhua Lv. 2020. "Improved Convergence Speed of a DCD-Based Algorithm for Sparse Solutions" Algorithms 13, no. 6: 136. https://doi.org/10.3390/a13060136
APA StyleQuan, Z., & Lv, S. (2020). Improved Convergence Speed of a DCD-Based Algorithm for Sparse Solutions. Algorithms, 13(6), 136. https://doi.org/10.3390/a13060136