On Classical Solutions for A Kuramoto–Sinelshchikov–Velarde-Type Equation
Abstract
:1. Introduction
- (i)
- ()
- ()
- ()
- (v)
- If (3) and (5) hold then u is unique.
- ()
- for some suitable , and every .
- ()
2. Proof of Theorem 1, under the Assumptions (2) and (4)
3. Proof of Theorem 1, under the assumptions (3) and (4) or (5)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tadmor, E. The well-posedness of the Kuramoto-Sivashinsky equation. SIAM J. Math. Anal. 1986, 17, 884–893. [Google Scholar] [CrossRef] [Green Version]
- Korteweg, D.J.; de Vries, G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Lond. Edinb. Dubl. Phil. Mag. 1895, 39, 422–443. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. On the solutions for an Ostrovsky type equation. Nonlinear Anal. Real World Appl. 2020, in press. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Convergence of the Rosenau-Korteweg-de Vries Equation to the Korteweg-de Vries One; Politecnico di Bari, Università di Bari: Bari, BA, Italy, 2020; Unpublished Work. [Google Scholar]
- Kenig, C.E.; Ponce, G.; Vega, L. Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Comm. Pure Appl. Math. 1993, 46, 527–620. [Google Scholar] [CrossRef]
- Kudryashov, N.A. On ”new travelling wave solutions” of the KdV and the KdV-Burgers equations. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 1891–1900. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. A singular limit problem for conservation laws related to the Rosenau equation. J. Math. Pures. Appl. 2017, 8, 24–47. [Google Scholar]
- LeFloch, P.G.; Natalini, R. Conservation laws with vanishing nonlinear diffusion and dispersion. Nonlinear Anal. 1999, 36, 213–230. [Google Scholar] [CrossRef]
- Schonbek, M.E. Convergence of solutions to nonlinear dispersive equations. Commun. Partial. Differ. Equ. 1982, 7, 959–1000. [Google Scholar]
- Amiranashvili, S.; Vladimirov, A.; Bandelow, U. A model equation for ultrashort optical pulses around the zero dispersion frequency. Eur. Phys. J. D 2010, 58, 219–226. [Google Scholar] [CrossRef]
- Amiranashvili, S.; Vladimirov, A.; Bandelow, U. Solitary-wave solutions for few-cycle optical pulses. Phys. Rev. A 2008, 77, 063821. [Google Scholar] [CrossRef] [Green Version]
- Coclite, G.M.; di Ruvo, L. Discontinuous solutions for the generalized short pulse equation. Evol. Equat. Contr. Theor. 2019, 8, 737–753. [Google Scholar] [CrossRef] [Green Version]
- Leblond, H.; Mihalache, D. Few-optical-cycle solitons: Modified Korteweg-de Vries sine-Gordon equation versus other non-slowly-varying-envelope-approximation models. Phys. Rev. A 2009, 79, 063835. [Google Scholar] [CrossRef] [Green Version]
- Leblond, H.; Mihalache, D. Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys. Rep. 2013, 523, 61–126. [Google Scholar] [CrossRef] [Green Version]
- Leblond, H.; Sanchez, F. Models for optical solitons in the two-cycle regime. Phys. Rev. A 2003, 67, 013804. [Google Scholar] [CrossRef] [Green Version]
- Coclite, G.M.; di Ruvo, L. Convergence of the solutions on the generalized Korteweg–de Vries equation. Math. Model. Anal. 2016, 21, 239–259. [Google Scholar] [CrossRef]
- Topper, J.; Kawahara, T. Approximate equations for long nonlinear waves on a viscous fluid. J. Phys. Soc. Japan 1978, 44, 663–666. [Google Scholar] [CrossRef]
- Cohen, B.I.; Krommes, J.A.; Tang, W.M.; Rosenbluth, M.N. Nonlinear saturation of the dissipative trapped-ion mode by mode coupling. Nucl. Fusion 1976, 16, 971. [Google Scholar] [CrossRef]
- Kuramoto, Y. Diffusion-Induced Chaos in Reaction Systems. Prog. Theor. Phys. Supp. 1978, 64, 346–367. [Google Scholar] [CrossRef]
- Kuramoto, Y.; Tsuzuki, T. On the Formation of Dissipative Structures in Reaction-Diffusion Systems: Reductive Perturbation Approach. Prog. Theor. Phys. 1975, 54, 687–699. [Google Scholar] [CrossRef] [Green Version]
- Kuramoto, Y.; Tsuzuki, T. Persistent Propagation of Concentration Waves in Dissipative Media Far from Thermal Equilibrium. Prog. Theor. Phys. 1976, 55, 356–369. [Google Scholar] [CrossRef] [Green Version]
- Sivashinsky, G. Nonlinear analysis of hydrodynamic instability in laminar flames-I. Derivation of basic equations. Acta Astronaut. 1977, 4, 1177–1206. [Google Scholar] [CrossRef]
- Chen, L.H.; Chang, H.C. Nonlinear waves on liquid film surfaces-II. Bifurcation analyses of the long-wave equation. Chem. Eng. Sci. 1986, 41, 2477–2486. [Google Scholar] [CrossRef]
- Hooper, A.; Grimshaw, R. Nonlinear instability at the interface between two viscous fluids. Phys. Fluids 1985, 28, 37–45. [Google Scholar] [CrossRef]
- LaQuey, R.; Mahajan, S.; Rutherford, P.; Tang, W. Nonlinear saturation of the trapped-ion mode. Phys. Rev. Lett. 1975, 34, 391–394. [Google Scholar] [CrossRef] [Green Version]
- Benney, D.J. Long waves on liquid films. J. Math. Phys. 1966, 45, 150–155. [Google Scholar] [CrossRef]
- Lin, S.P. Finite amplitude side-band stability of a viscous film. J. Fluid Mech. 1974, 63, 417–429. [Google Scholar] [CrossRef]
- Li, C.; Chen, G.; Zhao, S. Exact travelling wave solutions to the generalized Kuramoto-Sivashinsky equation. Lat. Am. Appl. Res. 2004, 34, 65–68. [Google Scholar]
- Foias, C.; Nicolaenko, B.; Sell, G.R.; Temam, R. Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension. J. Math. Pures Appl. 1988, 67, 197–226. [Google Scholar]
- Khalique, C. Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation. Caspian J. Math. Sci. 2012, 1, 109–116. [Google Scholar]
- Kudryashov, N.A. Exact solutions of the generalized Kuramoto-Sivashinsky equation. Phys. Lett. A 1990, 147, 287–291. [Google Scholar] [CrossRef]
- Nicolaenko, B.; Scheurer, B. Remarks on the Kuramoto-Sivashinsky equation. Physica D 1984, 12, 391–395. [Google Scholar] [CrossRef]
- Nicolaenko, B.; Scheurer, B.; Temam, R. Some global dynamical properties of the Kuramoto-Sivashinsky equations: nonlinear stability and attractors. Physica D 1985, 16, 155–183. [Google Scholar] [CrossRef]
- Xie, Y. Solving the generalized Benney equation by a combination method. Int. J. Nonlinear Sci. 2013, 15, 350–354. [Google Scholar]
- Armaou, A.; Christofides, P. Feedback control of the Kuramoto-Sivashinsky equation. Physica D 2000, 137, 49–61. [Google Scholar] [CrossRef]
- Cerpa, E. Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation. Commun. Pure Appl. Anal. 2010, 9, 91–102. [Google Scholar] [CrossRef]
- Giacomelli, L.; Otto, F. New bounds for the Kuramoto-Sivashinsky equation. Comm. Pure Appl. Math. 2005, 58, 297–318. [Google Scholar] [CrossRef]
- Christofides, P.; Armaou, A. Global stabilization of the Kuramoto-Sivashinsky equation via distributed output feedback control. Syst. Control Lett. 2000, 39, 283–294. [Google Scholar] [CrossRef]
- Hu, C.; Temam, R. Robust control of the Kuramoto-Sivashinsky equation. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 2001, 8, 315–338. [Google Scholar]
- Liu, W.J.; Krstić, M. Stability enhancement by boundary control in the Kuramoto-Sivashinsky equation. Nonlinear Anal. 2001, 43, 485–507. [Google Scholar] [CrossRef] [Green Version]
- Sajjadian, M. The shock profile wave propagation of Kuramoto-Sivashinsky equation and solitonic solutions of generalized Kuramoto-Sivashinsky equation. Acta Univ. Apulensis 2014, 38, 163–176. [Google Scholar]
- Biagioni, H.; Bona, J.; Iorio, R.; Scialom, M. On the korteweg-de vries-kuramoto-sivashinsky equation. Adv. Differ. Equ. 1996, 1, 1–20. [Google Scholar]
- Coclite, G.M.; di Ruvo, L. Dispersive and diffusive limits for Ostrovsky-Hunter type equations. Nonlinear Differ. Equ. Appl. 2015, 22, 1733–1763. [Google Scholar] [CrossRef] [Green Version]
- Coclite, G.M.; di Ruvo, L. Convergence of the Kuramoto-Sinelshchikov equation to the Burgers one. Acta Appl. Math. 2016, 145, 89–113. [Google Scholar] [CrossRef]
- Garcia-Ybarra, P.L.; Castillo, J.L.; Velarde, M.G. Bénard–Marangoni convection with a deformable interface and poorly conducting boundaries. Phys. Fluids 1987, 30, 2655–2661. [Google Scholar] [CrossRef]
- Garcia-Ybarra, P.; Castillo, J.; Velarde, M. A nonlinear evolution equation for Bénard-Marangoni convection with deformable boundary. Phys. Lett. A 1987, 122, 107–110. [Google Scholar] [CrossRef]
- Kamenov, O.Y. Solitary-wave and periodic solutions of the Kuramoto-Velarde dispersive equation. J. Theoret. Appl. Mech. 2016, 46, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Bernal, A. Initial value problem and asymptotic low-dimensional behavior in the Kuramoto-Velarde equation. Nonlinear Anal. Theory Methods Appl. 1992, 19, 643–685. [Google Scholar] [CrossRef]
- Pilod, D. Sharp well-posedness results for the Kuramoto-Velarde equation. Commun. Pure Appl. Anal. 2008, 7, 867–881. [Google Scholar] [CrossRef]
- Taylor, M.E. Partial differential equations I. Basic theory. In Applied Mathematical Sciences; Antman, S.S., Sirovich, L., Marsden, J.E., Eds.; Springer: New York, NY, USA, 2011; Volume 115. [Google Scholar]
- Coclite, G.M.; di Ruvo, L. Existence results for the Kudryashov-Sinelshchikov-Olver equation. Proc. Roy. Soc. Edinburgh Sect. A 2020, in press. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Convergence of the Ostrovsky equation to the Ostrovsky-Hunter one. J. Differ. Equ. 2014, 256, 3245–3277. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Oleinik type estimates for the Ostrovsky-Hunter equation. J. Math. Anal. Appl. 2015, 423, 162–190. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coclite, G.M.; di Ruvo, L. On Classical Solutions for A Kuramoto–Sinelshchikov–Velarde-Type Equation. Algorithms 2020, 13, 77. https://doi.org/10.3390/a13040077
Coclite GM, di Ruvo L. On Classical Solutions for A Kuramoto–Sinelshchikov–Velarde-Type Equation. Algorithms. 2020; 13(4):77. https://doi.org/10.3390/a13040077
Chicago/Turabian StyleCoclite, Giuseppe Maria, and Lorenzo di Ruvo. 2020. "On Classical Solutions for A Kuramoto–Sinelshchikov–Velarde-Type Equation" Algorithms 13, no. 4: 77. https://doi.org/10.3390/a13040077
APA StyleCoclite, G. M., & di Ruvo, L. (2020). On Classical Solutions for A Kuramoto–Sinelshchikov–Velarde-Type Equation. Algorithms, 13(4), 77. https://doi.org/10.3390/a13040077