Next Article in Journal
Beyond Newton: A New Root-Finding Fixed-Point Iteration for Nonlinear Equations
Previous Article in Journal
Experiments-Based Comparison of Different Power Controllers for a Solid Oxide Fuel Cell Against Model Imperfections and Delay Phenomena
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Classical Solutions for A Kuramoto–Sinelshchikov–Velarde-Type Equation

by
Giuseppe Maria Coclite
1,* and
Lorenzo di Ruvo
2
1
Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70125 Bari BA, Italy
2
Dipartimento di Matematica, Università di Bari, 70121 Bari BA, Italy
*
Author to whom correspondence should be addressed.
Algorithms 2020, 13(4), 77; https://doi.org/10.3390/a13040077
Submission received: 6 March 2020 / Revised: 24 March 2020 / Accepted: 27 March 2020 / Published: 28 March 2020

Abstract

:
The Kuramoto–Sinelshchikov–Velarde equation describes the evolution of a phase turbulence in reaction-diffusion systems or the evolution of the plane flame propagation, taking into account the combined influence of diffusion and thermal conduction of the gas on the stability of a plane flame front. In this paper, we prove the well-posedness of the classical solutions for the Cauchy problem.

1. Introduction

In this paper, we investigate the well-posedness of the following Cauchy problem:
t u + κ ( x u ) 2 + q ( x u ) 3 + r ( x u ) 4 + δ x 3 u + β 2 x 4 u + μ x 2 u ε + γ u x 2 u = 0 , t > 0 , x R , u ( 0 , x ) = u 0 ( x ) , x R ,
with
γ = 0 , β 0 , or
q = r = 0 , β 0 , κ = 2 γ .
Under Assumption (2), we assume on the initial datum
u 0 H 2 ( R ) .
Instead, under Assumption (3), we assume (4) or
u 0 H 3 ( R ) .
Observe that if q = r = δ = μ = β = γ = 0 , Equation (1) reads
t u + κ ( x u ) 2 + δ x 3 u = 0 .
Using the variable (see [1]),
v = x u
Equation (6) is equivalent to the Korteweg-de Vries equation [2]
t v + κ x v 2 + δ x 3 v = 0 ,
that has a very wide range of applications, such as magnetic fluid waves, ion sound waves, and longitudinal astigmatic waves.
From a mathematical point of view, in [3,4,5], the Cauchy problem for (8) is studied, while in [6], the author reviewed the travelling wave solutions for (8). Moreover, in [7,8,9], the convergence of the solution of (8) to the unique entropy one of the Burgers equation is proven.
Taking κ = r = δ = μ = β = γ = 0 and using the variable (7), (1) becomes
t v + q x v 3 + δ x 3 v = 0 ,
which is known as the modified Korteweg-de Vries equation.
[10,11,12,13,14,15] show that (9) is a non-slowly varying envelope approximation model that describes the physics of few-cycle-pulse optical solitons. In [3,5], the Cauchy problem for (9) is studied, while in [9,16], the convergence of the solution of (9) to the unique entropy solution of the following scalar conservation law
t v + q x v 3 = 0 .
Assuming κ = 1 and q = r = γ = 0 , (1) reads
t u + ( x u ) 2 + δ x 3 u + β 2 x 4 u + μ x 2 u = 0 .
Equation (11) arises in interesting physical situations, for example as a model for long waves on a viscous fluid owing down an inclined plane [17] and to derive drift waves in a plasma [18]. Equation (11) was derived also independently by Kuramoto [19,20,21] as a model for phase turbulence in reaction-diffusion systems and by Sivashinsky [22] as a model for plane flame propagation, describing the combined influence of diffusion and thermal conduction of the gas on the stability of a plane flame front.
Equation (11) also describes incipient instabilities in a variety of physical and chemical systems [23,24,25]. Moreover, (11), which is also known as the Benney–Lin equation [26,27], was derived by Kuramoto in the study of phase turbulence in the Belousov–Zhabotinsky reaction [28].
The dynamical properties and the existence of exact solutions for (11) have been investigated in [29,30,31,32,33,34]. In [35,36,37], the control problem for (11) with periodic boundary conditions, and on a bounded interval are studied, respectively. In [38], the problem of global exponential stabilization of (11) with periodic boundary conditions is analyzed. In [39], it is proposed a generalization of optimal control theory for (11), while in [40] the problem of global boundary control of (11) is considered. In [41], the existence of solitonic solutions for (11) is proven. In [1,42], the well-posedness of the Cauchy problem for (11) is proven, using the energy space technique and the fixed-point method, respectively. In particular, in [1], the well-posedness is proven, under the assumption
δ = 0 , μ = β 2 = 1 .
Observe that thanks to (7), Equation (11) is equivalent to the following one
t v + x v 2 + δ x 3 v + β 2 x 4 v = 0 .
Consequently, following [8,9,43], in [44], it is proven that when δ , β 2 go to zero, the solution of (13) converges to the unique entropy one of the Burgers equation.
Taking q = r = 0 , (1) is known as the Kuramoto-Velarde (KV) equation [45,46], which describes slow space-time variations of disturbances at interfaces, diffusion-reaction fronts and plasma instability fronts.
From a mathematical point of view, in [47] the exact solutions for the KV equation are studied, while in [48], the initial boundary problem is analyzed. In [49], the well-posedness of the Cauchy problem for the KV equation is proven in the energy spaces.
The main result of this paper is the following theorem.
Theorem 1.
Let T > 0 be given. The following statements hold.
(i)
If (2) and (4) hold then there exists a solution u of (1), such that
u H 1 ( ( 0 , T ) × R ) L ( 0 , T ; H 2 ( R ) ) .
( i i )
If (3) and (4) hold then there exists a solution u of (1) satisfying (14).
( i i i )
If (3) and (5) hold then there exists a solution u of (1), such that
u H 1 ( ( 0 , T ) × R ) L ( 0 , T ; H 3 ( R ) ) .
( i v )
If (2) and (4) hold then u is unique.
(v)
If (3) and (5) hold then u is unique.
( v i )
If (2) and (4) hold and u 1 and u 2 are two solutions of (1), we have that
u 1 ( t , · ) u 2 ( t , · ) L 2 ( R ) e C ( T ) t u 1 , 0 u 2 , 0 L 2 ( R ) ,
for some suitable C ( T ) > 0 , and every 0 t T .
( v i i )
If (3) and (5) hold then we have (16).
Theorem 1 improves the existing literature (see [1]) because it gives the well-posedness of (1) under Assumption (2), without additional assumption on the constants. Under Assumptions (3) and (4), Theorem 1 gives only the existence of the solution, while the uniqueness is guaranteed by Assumption (5). The argument of Theorem 1 relies on deriving suitable a priori estimates together with an application of the Cauchy–Kovalevskaya Theorem [50]. We conjecture that our argument can be applied also to the the initial boundary value problem and to multidimensional version of the problem.
The paper is organized as follows. In Section 2, we prove Theorem 1, under Assumption (2) and (4). In Section 3, Theorem 1 is proven, under Assumption (3) and (4) or (5). We state the conclusions in Section 4.

2. Proof of Theorem 1, under the Assumptions (2) and (4)

In this section, we prove Theorem 1, under the assumptions (2) and (4). Thanks to (2), (1) reads
t u + κ ( x u ) 2 + q ( x u ) 3 + r ( x u ) 4 + δ x 3 u + β 2 x 4 u + μ x 2 u ε , t > 0 , x R , u ( 0 , x ) = u 0 ( x ) , x R .
Let us prove some a priori estimates on u. We denote with C 0 the constants which depend only on the initial data, and with C ( T ) , the constants which depend also on T.
We prove the following lemma.
Lemma 1.
Fix T > 0 . Then, we have that
x u ( t , · ) L 2 ( R ) 2 + e μ 2 t β 2 β 2 0 t e μ 2 s β 2 x 3 u ( s , · ) L 2 ( R ) 2 d s C ( T ) ,
for every 0 t T .
Proof. 
Let 0 t T . Multiplying (17) by 2 x 2 u , an integration on R gives
d d t x u ( t , · ) L 2 ( R ) 2 = 2 R x 2 u t u d x = 2 κ R ( x u ) 2 x 2 u d x + 2 q R ( x u ) 3 d x + 2 r R ( x u ) 4 x 2 u d x + 2 α R x 3 u x 2 u d x + 2 β 2 R x 2 u x 4 u d x + 2 μ x 2 u ( t , · ) L 2 ( R ) 2 = 2 β 2 x 3 u ( t , · ) L 2 ( R ) 2 + 2 μ x 2 u ( t , · ) L 2 ( R ) 2 .
Therefore, we have that
d d t x u ( t , · ) L 2 ( R ) 2 + 2 β 2 x 3 u ( t , · ) L 2 ( R ) 2 = 2 μ x 2 u ε ( t , · ) L 2 ( R ) 2 .
Observe that
2 μ x 2 u ( t , · ) L 2 ( R ) 2 = 2 μ R x 2 u x 2 u d x = 2 μ R x u x 3 u d x 2 | μ | R | x u | | x 3 u | d x .
Consequently, by the Young inequality,
2 μ x 2 u ( t , · ) L 2 ( R ) 2 2 R μ x u β β x 3 u d x μ 2 β 2 x u ( t , · ) L 2 ( R ) 2 + β 2 x 3 u ( t , · ) L 2 ( R ) 2 .
It follows from (19) that
d d t x u ( t , · ) L 2 ( R ) 2 + β 2 x 3 u ( t , · ) L 2 ( R ) 2 μ 2 β 2 x u ( t , · ) L 2 ( R ) 2 .
The Gronwall Lemma and (4) give
x u ( t , · ) L 2 ( R ) 2 + β 2 e μ 2 t β 2 0 t e μ 2 s β 2 x 3 u ( s , · ) L 2 ( R ) 2 d s β 2 e μ 2 t β 2 u 0 H 2 ( R ) 2 C ( T ) ,
that is (18). □
Lemma 2.
Fix T > 0 . There exists a constant C ( T ) > 0 , such that
u ( t , · ) L 2 ( R ) 2 + β 2 e C 0 t 0 t e C 0 s x 2 u ( s , · ) L 2 ( R ) 2 d s C ( T ) ,
for every 0 t T . In particular,
u L ( ( 0 , T ) × R ) C ( T ) .
Moreover,
0 t x u ( s , · ) L 4 ( R ) 4 d s C ( T ) ,
for every 0 t T .
The proof of the previous lemma is based on the regularity of the functions u and the following result.
Lemma 3.
For each t 0 , we have that
R | u | | x u | 3 d x 2 u ( t , · ) L 2 ( R ) x 2 u ( t , · ) L 2 ( R ) x u ( t , · ) L 2 ( R ) 3 ,
R | u | | x u | 4 d x 2 2 u ( t , · ) L 2 ( R ) x 2 u ( t , · ) L 2 ( R ) x u ( t , · ) L 2 ( R ) 7 .
Proof. 
We begin by proving (24). Thanks to the regularity of the function u and the Hölder inequality,
u 2 ( t , x ) = 2 x u x u d y 2 R | u | | x u | d x 2 u ( t , · ) L 2 ( R ) x u ( t , · ) L 2 ( R ) .
Therefore,
u ( t , · ) L ( R ) 2 2 u ( t , · ) L 2 ( R ) x u ( t , · ) L 2 ( R ) .
Again, by the regularity of the function u and the Hölder inequality,
( x u ( t , x ) ) 2 = 2 x x u x 2 u d y 2 R | x u | | x 2 u | d x 2 x u ( t , · ) L 2 ( R ) x 2 u ( t , · ) L 2 ( R ) .
Hence,
x u ( t , · ) L ( R ) 2 2 x u ( t , · ) L 2 ( R ) x 2 u ( t , · ) L 2 ( R ) .
Consequently, by (25) and (26),
R | u | | x u | 3 d x u ( t , · ) L ( R ) x u ( t , · ) L ( R ) x u ( t , · ) L 2 ( R ) 2 2 u ( t , · ) L 2 ( R ) x 2 u ( t , · ) L 2 ( R ) x u ( t , · ) L 2 ( R ) 3 ,
that is (23).
Finally, we prove (24). By (25) and (26),
R | u | | x u | 4 d x u ( t , · ) L ( R ) x u ( t , · ) L ( R ) 2 x u ( t , · ) L 2 ( R ) 2 2 2 u ( t , · ) L 2 ( R ) x 2 u ( t , · ) L 2 ( R ) x u ( t , · ) L 2 ( R ) 7 ,
which gives (24). □
Proof of Lemma 2.
Let 0 t T . Multiplying (17) by 2 u , integrating on R , we have that
d d t u ( t , · ) L 2 ( R ) 2 = 2 R u t u d x = 2 κ R u ( x u ) 2 d x 2 q R u ( x u ) 3 d x 2 r R u ( x u ) 4 d x 2 δ R u x 3 u d x 2 β R u x 4 u d x 2 μ R u x 2 u d x = 2 κ R u ( x u ) 2 d x 2 q R u ( x u ) 3 d x 2 r R u ( x u ) 4 d x + 2 δ R x u x 2 u d x + 2 β 2 R x u x 3 u d x + 2 μ x u ( t , · ) L 2 ( R ) 2 = 2 κ R u ( x u ) 2 d x 2 q R u ( x u ) 3 d x 2 r R u ( x u ) 4 d x 2 β 2 x 2 u ( t , · ) L 2 ( R ) 2 + 2 μ x u ( t , · ) L 2 ( R ) 2 .
Therefore,
d d t u ( t , · ) L 2 ( R ) 2 + 2 β 2 x 2 u ( t , · ) L 2 ( R ) 2 = 2 κ R u ( x u ) 2 d x 2 q R u ( x u ) 3 d x 2 r R u ( x u ) 4 d x + 2 μ x u ( t , · ) L 2 ( R ) 2 .
Due to (18), (23), (25) and the Young inequality,
2 | κ | R | u | ( x u ) 2 d x 2 | κ | u ( t , · ) L ( R ) x u ( t , · ) L 2 ( R ) 2 C 0 u ( t , · ) L ( R ) 1 2 u ( t , · ) L ( R ) 2 + C 0 u ( t , · ) L 2 ( R ) x u ( t , · ) L 2 ( R ) 2 + C 0 C 0 u ( t , · ) L 2 ( R ) + C 0 C 0 u ( t , · ) L 2 ( R ) 2 + C 0 , 2 | q | R | u | | x u | 3 d x 4 | q | u ( t , · ) L 2 ( R ) x 2 u ( t , · ) L 2 ( R ) x u ( t , · ) L 2 ( R ) 3 C 0 u ( t , · ) L 2 ( R ) x 2 u ( t , · ) L 2 ( R ) C 0 u ( t , · ) L 2 ( R ) + x 2 u ( t , · ) L 2 ( R ) = C 0 u ( t , · ) L 2 ( R ) + | β | | β | x 2 u ( t , · ) L 2 ( R ) C 0 u ( t , · ) L 2 ( R ) 2 + C 0 + β 2 2 x 2 u ( t , · ) L 2 ( R ) 2 + 1 β 2 C 0 u ( t , · ) L 2 ( R ) 2 + β 2 2 x 2 u ( t , · ) L 2 ( R ) 2 + C 0 , 2 | r | R | u | ( x u ) 4 d x 4 2 | r | u ( t , · ) L 2 ( R ) x 2 u ( t , · ) L 2 ( R ) x u ( t , · ) L 2 ( R ) 7 C 0 u ( t , · ) L 2 ( R ) x 2 u ( t , · ) L 2 ( R ) = C 0 | β | u ( t , · ) L 2 ( R ) | β | x 2 u ( t , · ) L 2 ( R ) C 0 u ( t , · ) L 2 ( R ) + β 2 2 x 2 u ε ( t , · ) L 2 ( R ) 2 C 0 u ( t , · ) L 2 ( R ) 2 + β 2 2 x 2 u ε ( t , · ) L 2 ( R ) 2 .
It follows from (18) and (27) that
d d t u ( t , · ) L 2 ( R ) 2 + β 2 x 2 u ( t , · ) L 2 ( R ) 2 C 0 u ( t , · ) L 2 ( R ) 2 + C 0 + 2 | μ | x u ( t , · ) L 2 ( R ) 2 C 0 u ( t , · ) L 2 ( R ) 2 + C 0 .
The Gronwall Lemma and (4) give
u ( t , · ) L 2 ( R ) 2 + β 2 e C 0 t 0 t e C 0 s x 2 u ( s , · ) L 2 ( R ) 2 d s e C 0 t u 0 H 2 ( R ) 2 + C 0 e C 0 t 0 t e C 0 s d s C ( T ) ,
which gives (20).
Equation (21) follows from (18), (20) and (25).
Finally, we prove (22). We begin by observing that ([51] Lemma 2 . 3 ) says that
x u ( t , · ) L 4 ( R ) 4 6 u ( t , · ) L 2 ( R ) 2 + x u ( t , · ) L 2 ( R ) 2 x 2 u ( t , · ) L 2 ( R ) 2 .
Consequently, by (18) and (20),
x u ( t , · ) L 4 ( R ) 4 C 0 x 2 u ( t , · ) L 2 ( R ) 2 .
Integrating on ( 0 , t ) , by (20), we have that
0 t x u ε ( s , · ) L 4 ( R ) 4 d s C 0 0 t x 2 u ( s , · ) L 2 ( R ) 2 d s C 0 e C 0 t 0 t e C 0 s x 2 u ( s , · ) L 2 ( R ) 2 d s C ( T ) ,
which gives (22).
Lemma 4.
Fix T > 0 . There exists a constant C ( T ) > 0 , such that
x u L ( ( 0 , T ) × R ) C ( T ) .
In particular, we have that
x 2 u ( t , · ) L 2 ( R ) 2 + β 2 0 t x 4 u ( s , · ) L 2 ( R ) 2 d s C ( T ) ,
for every 0 t T .
Proof. 
Let 0 t T . Multiplying (17) by 2 x 4 u , an integration on R gives
d d t x 2 u ( t , · ) L 2 ( R ) 2 = 2 R x 4 u t u d x = 2 κ R ( x u ) 2 x 4 u d x 2 q R ( x u ) 3 x 4 u d x 2 r R ( x u ) 4 x 4 u d x 2 δ R x 3 u x 4 u d x 2 β 2 x 4 u ( t , · ) L 2 ( R ) 2 2 μ R x 2 u d x x 4 u d x = 2 κ R ( x u ) 2 x 4 u d x 2 q R ( x u ) 3 x 4 u d x + 8 r R ( x u ε ) 3 x 2 u x 3 u d x 2 β 2 x 4 u ( t , · ) L 2 ( R ) 2 + 2 μ x 3 u ( t , · ) L 2 ( R ) 2 .
Therefore,
d d t x 2 u ( t , · ) L 2 ( R ) 2 + 2 β 2 x 4 u ( t , · ) L 2 ( R ) 2 = 2 κ R ( x u ) 2 x 4 u d x 2 q R ( x u ) 3 x 4 u d x + 8 r R ( x u ε ) 3 x 2 u x 3 u d x + 2 μ x 3 u ( t , · ) L 2 ( R ) 2 .
Due to the Young inequality,
2 | κ | R ( x u ) 2 | x 4 | u d x = 2 R κ ( x u ) 2 β β x 4 u d x κ 2 β 2 x u ( t , · ) L 4 ( R ) 4 + β 2 x 4 u ( t , · ) L 2 ( R ) 2 , 2 | q | R | x u | 3 | x 4 u | d x = R 2 q ( x u ) 2 β β x 4 u d x 2 q 2 β 2 R ( x u ) 6 d x + β 2 2 x 4 u ( t , · ) L 2 ( R ) 2 2 q 2 β 2 x u L ( ( 0 , T ) × R ) 2 x u ( t , · ) L 4 ( R ) 4 + β 2 2 x 4 u ( t , · ) L 2 ( R ) 2 , 8 | r | R | x u ε | 3 | x 2 u | | x 3 u | d x 8 x u L ( ( 0 , T ) × R ) 3 R | r x 2 u | | x 3 u | d x 4 r 2 x u L ( ( 0 , T ) × R ) 3 x 2 u ( t , · ) L 2 ( R ) 2 + 4 x u L ( ( 0 , T ) × R ) 3 x 3 u ( t , · ) L 2 ( R ) 2 .
Therefore, by (30),
d d t x 2 u ( t , · ) L 2 ( R ) 2 + β 2 2 x 4 u ( t , · ) L 2 ( R ) 2 κ 2 β 2 x u ( t , · ) L 4 ( R ) 4 + 2 q 2 β 2 x u L ( ( 0 , T ) × R ) 2 x u ( t , · ) L 4 ( R ) 4 + 4 r 2 x u L ( ( 0 , T ) × R ) 3 x 2 u ( t , · ) L 2 ( R ) 2 + 4 x u L ( ( 0 , T ) × R ) 3 x 3 u ( t , · ) L 2 ( R ) 2 .
It follows from (4), (18), (20) and an integration on ( 0 , t ) that
d d t x 2 u ( t , · ) L 2 ( R ) 2 + β 2 2 x 4 u ( t , · ) L 2 ( R ) 2 u 0 H 2 ( R ) 2 + κ 2 β 2 0 t x u ( s , · ) L 4 ( R ) 4 d s + 2 q 2 β 2 x u L ( ( 0 , T ) × R ) 2 0 t x u ( s , · ) L 4 ( R ) 4 d s + 4 r 2 x u L ( ( 0 , T ) × R ) 3 0 t x 2 u ( s , · ) L 2 ( R ) 2 d s + 4 x u L ( ( 0 , T ) × R ) 3 0 t x 3 u ( s , · ) L 2 ( R ) 2 d s C ( T ) 1 + x u L ( ( 0 , T ) × R ) 2 + 4 r 2 x u L ( ( 0 , T ) × R ) 3 e C 0 t 0 t e C 0 s x 2 u ( s , · ) L 2 ( R ) 2 d s + 4 x u L ( ( 0 , T ) × R ) 3 e μ 2 t β 2 0 t e μ 2 s β 2 x 3 u ( s , · ) L 2 ( R ) 2 d s C ( T ) 1 + x u L ( ( 0 , T ) × R ) 2 + x u L ( ( 0 , T ) × R ) 3 .
Due to the Young inequality,
x u L ( ( 0 , T ) × R ) 3 D 1 2 x u L ( ( 0 , T ) × R ) 2 + 1 2 D 1 x u L ( ( 0 , T ) × R ) 4 ,
where D 1 is a positive constant, which will be specified later. It follows from (31) that
d d t x 2 u ( t , · ) L 2 ( R ) 2 + β 2 2 x 4 u ( t , · ) L 2 ( R ) 2 C ( T ) 1 + 1 + D 1 x u L ( ( 0 , T ) × R ) 2 + 1 D 1 x u L ( ( 0 , T ) × R ) 4
We prove (28). Thanks to (18), (26) and (32),
x u L ( ( 0 , T ) × R ) 2 C ( T ) 1 + 1 + D 1 x u L ( ( 0 , T ) × R ) 2 + 1 D 1 x u L ( ( 0 , T ) × R ) 4 .
Hence,
1 C ( T ) D 1 x u L ( ( 0 , T ) × R ) 4 C ( T ) 1 + D 1 x u L ( ( 0 , T ) × R ) 2 C ( T ) 0 .
Choosing
D 1 = 2 C ( T ) ,
we have that
1 2 x u L ( ( 0 , T ) × R ) 4 C ( T ) x u L ( ( 0 , T ) × R ) 2 C ( T ) 0 ,
which gives (28).
Finally, (29) follows from (28), (32) and (33). □
Lemma 5.
Fix T > 0 . There exists a constant C ( T ) > 0 , such that
β 2 x 2 u ( t , · ) L 2 ( R ) 2 + 0 t t u ( s , · ) L 2 ( R ) 2 d s C ( T ) ,
for every 0 t T .
Proof. 
Let 0 t T . Multiplying (17) by 2 t u , an integration on R gives
β 2 d d t x 2 u ( t , · ) L 2 ( R ) 2 + 2 t u ( t , · ) L 2 ( R ) 2 = 2 κ R ( x u ) 2 t u d x 2 q R ( x u ) 3 t u d x 2 r R ( x u ) 4 t u d x 2 δ R x 3 u t u d x 2 μ R x 2 u t u d x .
Due to the Young inequality,
2 | κ | R ( x u ) 2 | t u | d x = 2 R κ ( x u ) 2 D 2 D 2 t u d x κ 2 D 2 x u ( t , · ) L 4 ( R ) 4 + D 2 t u ( t , · ) L 2 ( R ) 2 , 2 | q | R | x u | 3 | t u | d x = 2 R q ( x u ) 3 D 2 D 2 t u d x q 2 D 2 R ( x u ) 6 d x + D 2 t u ( t , · ) L 2 ( R ) 2 q 2 D 2 x u L ( ( 0 , T ) × R ) 2 x u ( t , · ) L 4 ( R ) 4 + D 2 t u ( t , · ) L 2 ( R ) 2 C ( T ) D 2 x u ( t , · ) L 4 ( R ) 4 + D 2 t u ( t , · ) L 2 ( R ) 2 , 2 | r | R ( x u ) 4 | t u | d x = 2 R r ( x u ) 4 D 2 D 2 t u d x r 2 D 2 R ( x u ) 8 d x + D 2 t u ( t , · ) L 2 ( R ) 2 r 2 D 2 x u L ( ( 0 , T ) × R ) 4 x u ( t , · ) L 4 ( R ) 4 + D 2 t u ( t , · ) L 2 ( R ) 2 C ( T ) D 2 x u ( t , · ) L 4 ( R ) 4 + D 2 t u ( t , · ) L 2 ( R ) 2 , 2 | δ | R | x 3 u | | t u | d x = 2 R δ x 3 u D 2 D 2 t u d x δ 2 D 2 x 3 u ( t , · ) L 2 ( R ) 2 + D 2 t u ( t , · ) L 2 ( R ) 2 , 2 | μ | R | x 2 u | | t u | d x = 2 R μ x 2 u D 2 D 2 t u d x μ 2 D 2 x 2 u ( t , · ) L 2 ( R ) 2 + D 2 t u ( t , · ) L 2 ( R ) 2 .
where D 2 is a positive constant, which will be specified later. It follows from (35) that
β 2 d d t x 2 u ( t , · ) L 2 ( R ) 2 + 2 5 D 2 t u ( t , · ) L 2 ( R ) 2 C ( T ) D 2 x u ( t , · ) L 4 ( R ) 4 + δ 2 D 2 x 3 u ( t , · ) L 2 ( R ) 2 + μ 2 D 2 x 2 u ( t , · ) L 2 ( R ) 2 .
Choosing D 2 = 1 5 , we have that
β 2 d d t x 2 u ( t , · ) L 2 ( R ) 2 + t u ( t , · ) L 2 ( R ) 2 C ( T ) x u ( t , · ) L 4 ( R ) 4 + 5 δ 2 x 3 u ( t , · ) L 2 ( R ) 2 + 5 μ 2 x 2 u ( t , · ) L 2 ( R ) 2 .
Integrating on ( 0 , t ) , by (4), (18), (20) and (22), we obtain
β 2 x 2 u ( t , · ) L 2 ( R ) 2 + 0 t t u ( s , · ) L 2 ( R ) 2 d s C 0 + C ( T ) 0 t x u ( s , · ) L 4 ( R ) 4 d s + 5 δ 2 0 t x 3 u ( s , · ) L 2 ( R ) 2 d s + 5 μ 2 0 t x 2 u ( s , · ) L 2 ( R ) 2 d s C ( T ) + 5 δ 2 e μ 2 t β 2 0 t e μ 2 s β 2 x 3 u ( s , · ) L 2 ( R ) 2 d s + 5 μ 2 e C 0 t 0 t e C 0 s x 2 u ( s , · ) L 2 ( R ) 2 d s C ( T ) ,
which gives (34). □
Now, we prove Theorem 1.
Proof of Theorem 1.
Fix T > 0 . Thanks to Lemmas 1, 2, 45 and the Cauchy–Kovalevskaya Theorem [50], we have that u is solution of (1) and (14) holds.
We prove (16). Let u 1 and u 2 be two solutions of (1), which verify (14) that is
t u 1 + κ ( x u 1 ) 2 + q ( x u 1 ) 3 + r ( x u 1 ) 4 + δ x 3 u 1 + μ x 2 u 1 + β 2 x 4 u 1 = 0 , t > 0 , x R , u 1 ( 0 , x ) = u 1 , 0 ( x ) , x R , t u 2 + κ ( x u 2 ) 2 + q ( x u 2 ) 3 + r ( x u 2 ) 4 + δ x 3 u 2 + μ x 2 u 2 + β 2 x 4 u 2 = 0 , t > 0 , x R , u 1 ( 0 , x ) = u 1 , 0 ( x ) , x R ,
Then, the function
ω = u 1 u 2
is the solution of the following Cauchy problem:
t ω + κ ( x u 1 ) 2 ( x u 2 ) 2 + q ( x u 1 ) 3 ( x u 2 ) 3 + r ( x u 1 ) 4 ( x u 2 ) 4 + δ x 3 ω + μ x 2 ω + β 2 x 4 ω = 0 , t > 0 , x R , ω ( 0 , x ) = u 1 , 0 ( x ) u 2 , 0 ( x ) , x R .
Observe that thanks to (36),
( x u 1 ) 2 ( x u 2 ) 2 = ( x u 1 + x u 2 ) ( x u 1 x u 2 ) = ( x u 1 + x u 2 ) x ω , ( x u 1 ) 3 ( x u 2 ) 3 = [ ( x u 1 ) 2 + ( x u 2 ) 2 + x u 1 x u 2 ] ( x u 1 x u 2 ) = [ ( x u 1 ) 2 + ( x u 2 ) 2 + x u 1 x u 2 ] x ω , ( x u 1 ) 4 ( x u 2 ) 4 = [ ( x u 1 ) 2 + ( x u 2 ) 2 ] [ ( x u 1 ) 2 ( x u 2 ) 2 ] = [ ( x u 1 ) 2 + ( x u 2 ) 2 ] ( x u 1 + x u 2 ) ( x u 1 x u 2 ) = [ ( x u 1 ) 2 + ( x u 2 ) 2 ] ( x u 1 + x u 2 ) x ω .
Consequently, (37) is equivalent to the following equation:
t ω + κ ( x u 1 + x u 2 ) x ω + q [ ( x u 1 ) 2 + ( x u 2 ) 2 + x u 1 x u 2 ] x ω r [ ( x u 1 ) 2 + ( x u 2 ) 2 ] ( x u 1 + x u 2 ) x ω + δ x 3 ω + μ x 2 ω + β 2 x 4 ω = 0 .
Since
2 δ R ω x 3 ω = 2 δ R x ω x 2 ω d x = 0 , 2 μ R ω x 2 ω = 2 μ x ω ( t , · ) L 2 ( R ) 2 , 2 β 2 R ω x 4 ω d x = 2 β 2 R x ω x 3 ω d x = 2 β 2 x 2 ω ( t , · ) L 2 ( R ) 2 ,
multiplying (38) by 2 ω , an integration on R gives,
d d t ω ( t , · ) L 2 ( R ) 2 + 2 β 2 x 2 ω ( t , · ) L 2 ( R ) 2 = 2 μ x ω ( t , · ) L 2 ( R ) 2 2 κ R ( x u 1 + x u 2 ) ω x ω d x 2 q R [ ( x u 1 ) 2 + ( x u 2 ) 2 + x u 1 x u 2 ] ω x ω d x 2 r R [ ( x u 1 ) 2 + ( x u 2 ) 2 ] ( x u 1 + x u 2 ) ω x ω d x .
Observe that since u 1 , u 2 H 2 ( R ) , for every 0 t T , we have
x u 1 L ( ( 0 , T ) × R ) , x u 2 L ( ( 0 , T ) × R ) C ( T ) .
Thanks to (41), we have that
( x u 1 + x u 2 ) 2 x u 1 L ( ( 0 , T ) × R ) + x u 2 L ( ( 0 , T ) × R ) 2 C ( T ) , [ ( x u 1 ) 2 + ( x u 2 ) 2 + x u 1 x u 2 ] 2 x u 1 L ( ( 0 , T ) × R ) 2 + x u 2 L ( ( 0 , T ) × R ) 2 + x u 1 L ( ( 0 , T ) × R ) x u 2 L ( ( 0 , T ) × R ) 2 C ( T ) , [ ( x u 1 ) 2 + ( x u 2 ) 2 ] 2 x u 1 L ( ( 0 , T ) × R ) 2 + x u 2 L ( ( 0 , T ) × R ) 2 2 C ( T ) .
Consequently, by the Young inequality,
2 | κ | R | ( x u 1 + x u 2 ) | | ω | | x ω | d x ω ( t , · ) L 2 ( R ) 2 + κ 2 R ( x u 1 + x u 2 ) 2 ( x ω ) 2 d x ω ( t , · ) L 2 ( R ) 2 + C ( T ) x ω ( t , · ) L 2 ( R ) 2 , 2 | q | R | ( x u 1 ) 2 + ( x u 2 ) 2 + x u 1 x u 2 | | ω | | x ω | d x ω ( t , · ) L 2 ( R ) 2 + q 2 R [ ( x u 1 ) 2 + ( x u 2 ) 2 + x u 1 x u 2 ] 2 ( x ω ) 2 d x ω ( t , · ) L 2 ( R ) 2 + C ( T ) x ω ( t , · ) L 2 ( R ) 2 , 2 | r | R | ( x u 1 ) 2 + ( x u 2 ) 2 | | x u 1 + x u 2 | | ω | | x ω | d x ω ( t , · ) L 2 ( R ) 2 + r 2 R ( ( x u 1 ) 2 + ( x u 2 ) 2 ) 2 ( x u 1 + x u 2 ) 2 ( x ω ) 2 d x ω ( t , · ) L 2 ( R ) 2 + C ( T ) x ω ( t , · ) L 2 ( R ) 2 .
It follows from (40) that
d d t ω ( t , · ) L 2 ( R ) 2 + 2 β 2 x 2 ω ( t , · ) L 2 ( R ) 2 3 ω ( t , · ) L 2 ( R ) 2 + C ( T ) x ω ( t , · ) L 2 ( R ) 2 .
Due to the Young inequality,
C ( T ) x ω ( t , · ) 2 = C ( T ) R ω x 2 ω d x C ( T ) R | ω | | x 2 ω | d x = 2 R C ( T ) ω 2 β β x 2 ω d x C ( T ) ω ( t , · ) L 2 ( R ) 2 + β 2 x 2 ω ( t , · ) L 2 ( R ) 2 .
Therefore, by (42),
d d t ω ( t , · ) L 2 ( R ) 2 + β 2 x 2 ω ( t , · ) L 2 ( R ) 2 C ( T ) ω ( t , · ) L 2 ( R ) 2 .
The Gronwall Lemma and (37) gives
ω ( t , · ) L 2 ( R ) 2 + β 2 e C ( T ) t 0 t e C ( T ) s x 2 ω ( s , · ) L 2 ( R ) 2 d s e C ( T ) t ω 0 L 2 ( R ) .
Equation (16) follows from (36) and (43). □

3. Proof of Theorem 1, under the assumptions (3) and (4) or (5)

In this section, we prove Theorem 1, under the assumptions (3) and (4). Thanks to (3), (1) reads
t u + 2 γ ( x u ) 2 + δ x 3 u + β 2 x 4 u + μ x 2 u ε + γ u x 2 u = 0 , t > 0 , x R , u ( 0 , x ) = u 0 ( x ) , x R ,
Let us prove some a priori estimates on u. We denote with C 0 the constants which depend only on the initial data, and with C ( T ) , the constants which depend also on T.
Lemma 6.
Fix T > 0 and assume (4) or (5). There exists a constant C ( T ) > 0 , such that
u ( t , · ) L 2 ( R ) 2 + β 2 e μ 2 t β 2 0 t e μ 2 s β 2 x 2 u ( s , · ) L 2 ( R ) 2 d s C ( T ) ,
for every 0 t T .
Proof. 
Let 0 t T . Multiplying (44) by 2 u , an integration on R gives
u ( t , · ) L 2 ( R ) 2 = 2 R u t u d x = 4 γ R u ( x u ) 2 d x 2 δ R u x 3 u d x 2 β 2 R u x 4 u d x 2 μ R u x 2 u d x 2 γ R u 2 x 2 u d x = 4 γ R u ( x u ) 2 d x + 2 δ R x u x 2 u d x + 2 β 2 R x u x 3 u d x 2 μ R u x 2 u d x + 4 γ R u ( x 2 u ) 2 d x = 2 β 2 x 2 u ( t , · ) L 2 ( R ) 2 2 μ R u x 2 u d x .
Therefore,
d d t u ( t , · ) L 2 ( R ) 2 + 2 β 2 x 2 u ( t , · ) L 2 ( R ) 2 = 2 μ R u x 2 u d x .
Due to the Young inequality,
| μ | R | u | | x 2 u | d x = 2 R μ u β β x 2 u d x μ 2 β 2 u ( t , · ) L 2 ( R ) 2 + β 2 x 2 u ( t , · ) L 2 ( R ) 2 .
Consequently by (46),
d d t u ( t , · ) L 2 ( R ) 2 + β 2 x 2 u ( t , · ) L 2 ( R ) 2 μ 2 β 2 u ( t , · ) L 2 ( R ) 2 .
It follows from the Gronwall Lemma and (4) that
u ( t , · ) L 2 ( R ) 2 + β 2 e μ 2 t β 2 0 t e μ 2 s β 2 x 2 u ( s , · ) L 2 ( R ) 2 d s β 2 C 0 e μ 2 t β 2 C ( T ) ,
which gives (45). □
Lemma 7.
Fix T > 0 and assume (4) or (5). There exists a positive constant C ( T ) > 0 , such that (21) holds. In particular,
x u ( t , · ) L 2 ( R ) 2 + 2 β 2 0 t x 3 u ( s , · ) L 2 ( R ) 2 d s C ( T ) ,
for every 0 t T . Moreover, (22) holds, for every 0 t T .
Proof. 
Let 0 t T . Multiplying (44) by 2 x 2 u , an integration on R gives
d d t x u ( t , · ) L 2 ( R ) 2 = 2 R u x 2 u d x = 2 κ R ( x u ) 2 x 2 u d x + 2 δ R x 2 u x 3 u d x + 2 β 2 R x 2 u x 4 u d x + 2 μ x 2 u ( t , · ) L 2 ( R ) 2 2 γ R u ( x 2 u ) 2 d x = 2 β 2 x 3 u ( t , · ) L 2 ( R ) 2 + 2 μ x 2 u ( t , · ) L 2 ( R ) 2 2 γ R u ( x 2 u ) 2 d x .
Hence,
d d t x u ( t , · ) L 2 ( R ) 2 + 2 β 2 x 3 u ( t , · ) L 2 ( R ) 2 = 2 γ R u ( x 2 u ) 2 d x + 2 μ x 2 u ( t , · ) L 2 ( R ) 2 2 | γ | R R | u | ( x 2 u ) 2 d x + 2 | μ | x 2 u ( t , · ) L 2 ( R ) 2 2 | γ | u L ( ( 0 , T ) × R ) x 2 u ( t , · ) L 2 ( R ) 2 + 2 | μ | x 2 u ( t , · ) L 2 ( R ) 2 C 0 1 + u L ( ( 0 , T ) × R ) x 2 u ( t , · ) L 2 ( R ) 2 .
It follows from (4), (45) and an integration on ( 0 , t ) that
x u ( t , · ) L 2 ( R ) 2 + 2 β 2 0 t x 3 u ( s , · ) L 2 ( R ) 2 d s C 0 + C 0 1 + u L ( ( 0 , T ) × R ) 0 t x 2 u ( s , · ) L 2 ( R ) 2 d s C 0 + C 0 1 + u L ( ( 0 , T ) × R ) e μ 2 t β 2 0 t e μ 2 s β 2 x 2 u ( s , · ) L 2 ( R ) 2 d s C ( T ) 1 + u L ( ( 0 , T ) × R ) .
We prove (21). Thanks to (25), (45) and (48),
u ε L ( ( 0 , T ) × R ) 2 C ( T ) 1 + u L ( ( 0 , T ) × R ) .
Thus, we obtain that
u ε L ( ( 0 , T ) × R ) 4 C ( T ) u ε L ( ( 0 , T ) × R ) C ( T ) 0 .
Arguing as in ([52], Lemma 2.4) or ([53], Lemma 2.3), we have (21).
Finally, (47) follows from (21) and (48), while thanks to (45) and (47), arguing as in Lemma 2, we have (22). □
Lemma 8.
Fix T > 0 and assume (4) or (5). There exists a positive constant C ( T ) > 0 , such that
β 2 x 2 u ( t , · ) L 2 ( R ) 2 + 0 t t u ( s , · ) L 2 ( R ) 2 d s C ( T ) ,
for every 0 t T . Moreover, (28) holds.
Proof. 
Let 0 t T . Multiplying (44) by 2 t u , an integration on R gives
β 2 d d t x 2 u ( t , · ) L 2 ( R ) 2 + 2 t u ( t , · ) L 2 ( R ) = 2 γ R ( x u ) 2 t u d x 2 δ R x 3 u t u d x 2 μ R x 2 u t u d x 2 γ R u x 2 u t u d x .
Due to (21) and the Young inequality,
2 | γ | R ( x u ) 2 | t u | d x = 2 R γ ( x u ) 2 D 3 D 3 t u d x γ 2 D 3 x u ( t , · ) L 4 ( R ) 4 + D 3 t u ( t , · ) L 2 ( R ) 2 , 2 | δ | R | x 3 u | | t u | d x = 2 R δ x 3 u D 3 D 3 t u d x δ 2 D 3 x 3 u ( t , · ) L 2 ( R ) 2 + D 3 t u ( t , · ) L 2 ( R ) 2 , 2 | μ | R | x 2 u | | t u | d x = 2 R μ x 2 u D 3 D 3 t u d x μ 2 D 3 x 2 u ( t , · ) L 2 ( R ) 2 + D 3 t u ( t , · ) L 2 ( R ) 2 , 2 | γ | R | u x 2 u | | t u | d x = 2 R γ u x 2 u D 3 D 3 t u d x γ 2 D 3 R u 2 ( x 2 u ) 2 d x + D 3 t u ( t , · ) L 2 ( R ) 2 γ 2 D 3 u L ( ( 0 , T ) × R ) 2 x 2 u ( t , · ) L 2 ( R ) 2 + D 3 t u ( t , · ) L 2 ( R ) 2 C ( T ) D 3 x 2 u ( t , · ) L 2 ( R ) 2 + D 3 t u ( t , · ) L 2 ( R ) 2 ,
where D 3 is a positive constant, which will be specified later. Consequently, by (50),
β 2 d d t x 2 u ( t , · ) L 2 ( R ) 2 + 2 1 2 D 3 t u ( t , · ) L 2 ( R ) γ 2 D 3 x u ( t , · ) L 4 ( R ) 4 + δ 2 D 3 x 3 u ( t , · ) L 2 ( R ) 2 + C ( T ) D 3 x 2 u ( t , · ) L 2 ( R ) 2 .
Taking D 3 = 1 2 , we have
β 2 d d t x 2 u ( t , · ) L 2 ( R ) 2 + t u ( t , · ) L 2 ( R ) 2 γ 2 x u ( t , · ) L 4 ( R ) 4 + 2 δ 2 x 3 u ( t , · ) L 2 ( R ) 2 + C ( T ) x 2 u ( t , · ) L 2 ( R ) 2 .
It follows from (4), (45), (47) that
β 2 x 2 u ( t , · ) L 2 ( R ) 2 + 0 t t u ( s , · ) L 2 ( R ) 2 d s u 0 H 2 ( R ) 2 + 2 γ 2 0 t x u ( s , · ) L 4 ( R ) 4 d s + 2 δ 2 0 t x 3 u ( s , · ) L 2 ( R ) 2 d s + C ( T ) 0 t x 2 u ( s , · ) L 2 ( R ) 2 d s C ( T ) ,
which gives (49). □
Lemma 9.
Fix T > 0 and assume (5). There exists a positive constant C ( T ) > 0 , such that
x 3 u ( t , · ) L 2 ( R ) 2 + β 2 R x 5 u ( s , · ) L 2 ( R ) 2 d s C ( T ) ,
for every 0 t T . In particular, we have that
x 2 u L ( ( 0 , T ) × R ) C ( T ) .
Proof. 
Let 0 t T . Multiplying (44) by 2 x 6 u , an integration on R gives
d d t x 3 u ( t , · ) L 2 ( R ) 2 = 2 R x 6 u t u d x = 2 γ R ( x u ) 2 x 6 u d x + 2 δ R x 3 u x 6 u d x + 2 β 2 R x 4 u x 6 u d x + 2 μ R x 2 u x 6 u d x + 2 γ R u x 2 u x 6 u d x = 4 γ R x u x 2 u x 5 u d x 2 δ R x 4 u x 5 u d x 2 β 2 x 5 u ( t , · ) L 2 ( R ) 2 2 μ R x 3 u x 5 u d x 2 γ R x u x 2 u x 5 u d x 2 γ R u x 3 u x 5 u d x = 6 γ R x u x 2 u x 5 u d x 2 β 2 x 5 u ( t , · ) L 2 ( R ) 2 + 2 μ x 4 u ( t , · ) L 2 ( R ) 2 2 γ R u x 3 u x 5 u d x .
Therefore, we have that
d d t x 3 u ( t , · ) L 2 ( R ) 2 + 2 β 2 x 5 u ( t , · ) L 2 ( R ) 2 = 6 γ R x u x 2 u x 5 u d x + 2 μ x 4 u ( t , · ) L 2 ( R ) 2 2 γ R u x 3 u x 5 u d x .
Due to (21), (28), (49) and the Young inequality,
6 | γ | R | x u x 2 u | | x 5 u | d x = 6 R γ x u x 2 u β D 4 β D 4 x 5 u d x 3 γ 2 D 4 R ( x u ) 2 ( x 2 u ) 2 d x + 3 β 2 D 3 x 5 u ( t , · ) L 2 ( R ) 2 3 γ 2 β 2 D 4 x u L ( ( 0 , T ) × R ) 2 x 2 u ( t , · ) L 2 ( R ) 2 + 3 β 2 D 4 x 5 u ( t , · ) L 2 ( R ) 2 C ( T ) D 4 + 3 β 2 D 4 x 5 u ( t , · ) L 2 ( R ) 2 , 2 | γ | R | u x 3 u | | x 5 u | d x = 2 R γ u x 3 u β D 4 β D 4 x 5 u d x d x γ 2 β 2 D 4 R u 2 ( x 3 u ) 2 d x + β 2 D 4 x 5 u ( t , · ) L 2 ( R ) 2 γ 2 β 2 D 4 u L ( ( 0 , T ) × R ) 2 x 3 u ( t , · ) L 2 ( R ) 2 + β 2 D 4 x 5 u ( t , · ) L 2 ( R ) 2 C ( T ) D 4 x 3 u ( t , · ) L 2 ( R ) 2 + β 2 D 4 x 5 u ( t , · ) L 2 ( R ) 2 ,
where D 4 is a positive constant, which will be specified later. Therefore, by (53),
d d t x 3 u ( t , · ) L 2 ( R ) 2 + β 2 2 4 D 4 x 5 u ( t , · ) L 2 ( R ) 2 C ( T ) D 4 + C ( T ) D 4 x 3 u ( t , · ) L 2 ( R ) 2 + 2 μ x 4 u ( t , · ) L 2 ( R ) 2 .
Observe that
2 μ x 4 u ( t , · ) L 2 ( R ) 2 = 2 μ R x 4 u x 4 u d x = 2 μ R x 3 u x 5 u d x .
Thus, by the Young inequality,
2 | μ | x 4 u ( t , · ) L 2 ( R ) 2 2 | μ | R x 3 u x 5 u d x = 2 R μ x 3 u β D 4 β D 4 x 4 u d x μ 2 β 2 D 4 x 3 u ( t , · ) L 2 ( R ) 2 + β 2 D 4 x 5 u ( t , · ) L 2 ( R ) 2 .
It follows from (54) that
d d t x 3 u ( t , · ) L 2 ( R ) 2 + β 2 2 5 D 4 x 5 u ( t , · ) L 2 ( R ) 2 C ( T ) D 4 + C ( T ) D 4 x 3 u ( t , · ) L 2 ( R ) 2 .
Choosing D 4 = 1 5 , we have that
d d t x 3 u ( t , · ) L 2 ( R ) 2 + β 2 x 5 u ( t , · ) L 2 ( R ) 2 C ( T ) + C ( T ) x 3 u ( t , · ) L 2 ( R ) 2 .
Integrating on ( 0 , t ) , by (5) and (47), we obtain that
x 3 u ( t , · ) L 2 ( R ) 2 + β 2 0 t x 5 u ( s , · ) L 2 ( R ) 2 d s u 0 H 3 ( R ) 2 + C ( T ) t + C ( T ) 0 t x 3 u ( s , · ) L 2 ( R ) 2 d s C ( T ) ,
which gives (51).
Finally, we prove (52). Due to (49), (51) and the Hölder inequality,
( x 2 u ( t , x ) ) 2 = 2 x x 2 u x 3 u d y R | x 2 u | | x 3 u | d x x 2 u ( t , · ) L 2 ( R ) x 3 u ( t , · ) L 2 ( R ) C ( T ) .
Hence,
x 2 u L ( ( 0 , T ) × R ) 2 C ( T ) ,
which gives (52). □
Now, we prove Theorem 1.
Proof of Theorem 1.
Let T > 0 . Assuming (3) and (4), thanks to Lemmas 6, 7, 8 and the Cauchy–Kovalevskaya Theorem [50], we have that u is solution of (1) and (14) holds.
Instead, assuming (3) and (5), thanks to Lemmas 6, 7, 8, 9 and the Cauchy–Kovalevskaya Theorem [50], we have that u is solution of (1) and (15) holds.
We prove (16), under Assumptions (3) and (5). Let u 1 and u 2 be two solutions of (1), which verify (15) that is
t u 1 + 2 γ ( x u 1 ) 2 + δ x 3 u 1 + μ x 2 u 1 + β 2 x 4 u 1 + γ u 1 x 2 u 1 = 0 , t > 0 , x R , u 1 ( 0 , x ) = u 1 , 0 ( x ) , x R , t u 2 + 2 γ ( x u 2 ) 2 + δ x 3 u 2 + μ x 2 u 2 + β 2 x 4 u 2 + γ u 2 x 2 u 2 = 0 , t > 0 , x R , u 1 ( 0 , x ) = u 1 , 0 ( x ) , x R ,
Then, the function ω , defined in (36), is the solution of the following Cauchy problem:
t ω + 2 γ ( x u 1 ) 2 ( x u 2 ) 2 + δ x 3 ω + μ x 2 ω + β 2 x 4 ω + γ u 1 x 2 u 1 γ u 2 x 2 u 2 = 0 , t > 0 , x R , ω ( 0 , x ) = u 1 , 0 ( x ) u 2 , 0 ( x ) , x R .
Observe that thanks to (36),
u 1 x 2 u 1 u 2 x 2 u 2 = u 1 x 2 u 1 u 2 x 2 u 1 + u 2 x 2 u 1 u 2 x 2 u 2 = ω x 2 u 1 + u 2 x 2 ω , ( x u 1 ) 2 ( x u 2 ) 2 = ( x u 1 + x u 2 ) x ω .
Consequently, (55) is equivalent to the following equation:
t ω + 2 γ ( x u 1 + x u 2 ) x ω + γ ω x 2 u 1 + γ u 2 x 2 ω + δ x 3 ω + μ x 2 ω + β 2 x 4 ω = 0 .
Therefore, multiplying (56), by (39) and an integration on R of, we have that
d d t ω ( t , · ) L 2 ( R ) 2 + 2 β 2 x 2 ω ( t , · ) L 2 ( R ) 2 = 2 μ x ω ( t , · ) L 2 ( R ) 2 2 γ R ( x u 1 + x u 2 ) ω x ω d x 2 γ R x 2 u 1 ω 2 d x 2 γ R u 2 ω x 2 ω d x .
Since u 1 , u 2 H 3 ( R ) , for every 0 t T , we have
x u 1 L ( ( 0 , T ) × R ) , x u 2 L ( ( 0 , T ) × R ) C ( T ) , x 2 u 1 L ( ( 0 , T ) × R ) , u 2 L ( ( 0 , T ) × R ) C ( T ) .
Due to (58) and the Young inequality,
2 | γ | R ( x u 1 + x u 2 ) ω x ω d x ω ( t , · ) L 2 ( R ) 2 + γ 2 R ( x u 1 + x u 2 ) 2 ( x ω ) 2 d x ω ( t , · ) L 2 ( R ) 2 + γ 2 x u 1 L ( ( 0 , T ) × R ) + x u 2 L ( ( 0 , T ) × R ) x ω ( t , · ) L 2 ( R ) 2 ω ( t , · ) L 2 ( R ) 2 + C ( T ) x ω ( t , · ) L 2 ( R ) 2 , 2 | γ | R | x 2 u 1 | ω 2 d x 2 | γ | x 2 u 1 L ( ( 0 , T ) × R ) ω ( t , · ) L 2 ( R ) 2 C ( T ) ω ( t , · ) L 2 ( R ) 2 , 2 | γ | R | u 2 ω | | x 2 ω | d x = 2 R γ u 2 ω β 2 β x 2 ω d x γ 2 β 2 u 2 L ( ( 0 , T ) × R ) ω ( t , · ) L 2 ( R ) 2 + β 2 x 2 ω ( t , · ) L 2 ( R ) 2 C ( T ) ω ( t , · ) L 2 ( R ) 2 + β 2 x 2 ω ( t , · ) L 2 ( R ) 2 .
It follows from (57) that
d d t ω ( t , · ) L 2 ( R ) 2 + β 2 x 2 ω ( t , · ) L 2 ( R ) 2 C ( T ) ω ( t , · ) L 2 ( R ) 2 + C ( T ) x ω ( t , · ) L 2 ( R ) 2 .
Therefore, arguing as in Section 2, we have (16). □

4. Conclusions

In this paper, we prove the well-posedness of the classical solutions for the Cauchy problem of the Kuramoto–Sinelshchikov–Velarde equation, that describes the evolution of a phase turbulence in reaction-diffusion systems or the evolution of the plane flame propagation, taking in account the combined influence of diffusion and thermal conduction of the gas on the stability of a plane flame front. Our result requires very general assumptions on the coefficients and the argument is based on energy estimates and the Cauchy–Kovalevskaya Theorem.

Author Contributions

Conceptualization, G.M.C. and L.d.R.; Methodology, G.M.C. and L.d.R.; Software, G.M.C. and L.d.R.; Validation, G.M.C. and L.d.R.; Formal analysis, G.M.C. and L.d.R.; Investigation, G.M.C. and L.d.R.; Resources, G.M.C. and L.d.R.; Data curation, G.M.C. and L.d.R.; Writing—original draft preparation, G.M.C. and L.d.R.; Writing—review and editing, G.M.C. and L.d.R.; Visualization, G.M.C. and L.d.R.; Supervision, G.M.C. and L.d.R.; Project administration, G.M.C. and L.d.R.; Funding acquisition, G.M.C. and L.d.R. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Acknowledgments

The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Tadmor, E. The well-posedness of the Kuramoto-Sivashinsky equation. SIAM J. Math. Anal. 1986, 17, 884–893. [Google Scholar] [CrossRef] [Green Version]
  2. Korteweg, D.J.; de Vries, G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Lond. Edinb. Dubl. Phil. Mag. 1895, 39, 422–443. [Google Scholar] [CrossRef]
  3. Coclite, G.M.; di Ruvo, L. On the solutions for an Ostrovsky type equation. Nonlinear Anal. Real World Appl. 2020, in press. [Google Scholar] [CrossRef]
  4. Coclite, G.M.; di Ruvo, L. Convergence of the Rosenau-Korteweg-de Vries Equation to the Korteweg-de Vries One; Politecnico di Bari, Università di Bari: Bari, BA, Italy, 2020; Unpublished Work. [Google Scholar]
  5. Kenig, C.E.; Ponce, G.; Vega, L. Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Comm. Pure Appl. Math. 1993, 46, 527–620. [Google Scholar] [CrossRef]
  6. Kudryashov, N.A. On ”new travelling wave solutions” of the KdV and the KdV-Burgers equations. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 1891–1900. [Google Scholar] [CrossRef]
  7. Coclite, G.M.; di Ruvo, L. A singular limit problem for conservation laws related to the Rosenau equation. J. Math. Pures. Appl. 2017, 8, 24–47. [Google Scholar]
  8. LeFloch, P.G.; Natalini, R. Conservation laws with vanishing nonlinear diffusion and dispersion. Nonlinear Anal. 1999, 36, 213–230. [Google Scholar] [CrossRef]
  9. Schonbek, M.E. Convergence of solutions to nonlinear dispersive equations. Commun. Partial. Differ. Equ. 1982, 7, 959–1000. [Google Scholar]
  10. Amiranashvili, S.; Vladimirov, A.; Bandelow, U. A model equation for ultrashort optical pulses around the zero dispersion frequency. Eur. Phys. J. D 2010, 58, 219–226. [Google Scholar] [CrossRef]
  11. Amiranashvili, S.; Vladimirov, A.; Bandelow, U. Solitary-wave solutions for few-cycle optical pulses. Phys. Rev. A 2008, 77, 063821. [Google Scholar] [CrossRef] [Green Version]
  12. Coclite, G.M.; di Ruvo, L. Discontinuous solutions for the generalized short pulse equation. Evol. Equat. Contr. Theor. 2019, 8, 737–753. [Google Scholar] [CrossRef] [Green Version]
  13. Leblond, H.; Mihalache, D. Few-optical-cycle solitons: Modified Korteweg-de Vries sine-Gordon equation versus other non-slowly-varying-envelope-approximation models. Phys. Rev. A 2009, 79, 063835. [Google Scholar] [CrossRef] [Green Version]
  14. Leblond, H.; Mihalache, D. Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys. Rep. 2013, 523, 61–126. [Google Scholar] [CrossRef] [Green Version]
  15. Leblond, H.; Sanchez, F. Models for optical solitons in the two-cycle regime. Phys. Rev. A 2003, 67, 013804. [Google Scholar] [CrossRef] [Green Version]
  16. Coclite, G.M.; di Ruvo, L. Convergence of the solutions on the generalized Korteweg–de Vries equation. Math. Model. Anal. 2016, 21, 239–259. [Google Scholar] [CrossRef]
  17. Topper, J.; Kawahara, T. Approximate equations for long nonlinear waves on a viscous fluid. J. Phys. Soc. Japan 1978, 44, 663–666. [Google Scholar] [CrossRef]
  18. Cohen, B.I.; Krommes, J.A.; Tang, W.M.; Rosenbluth, M.N. Nonlinear saturation of the dissipative trapped-ion mode by mode coupling. Nucl. Fusion 1976, 16, 971. [Google Scholar] [CrossRef]
  19. Kuramoto, Y. Diffusion-Induced Chaos in Reaction Systems. Prog. Theor. Phys. Supp. 1978, 64, 346–367. [Google Scholar] [CrossRef]
  20. Kuramoto, Y.; Tsuzuki, T. On the Formation of Dissipative Structures in Reaction-Diffusion Systems: Reductive Perturbation Approach. Prog. Theor. Phys. 1975, 54, 687–699. [Google Scholar] [CrossRef] [Green Version]
  21. Kuramoto, Y.; Tsuzuki, T. Persistent Propagation of Concentration Waves in Dissipative Media Far from Thermal Equilibrium. Prog. Theor. Phys. 1976, 55, 356–369. [Google Scholar] [CrossRef] [Green Version]
  22. Sivashinsky, G. Nonlinear analysis of hydrodynamic instability in laminar flames-I. Derivation of basic equations. Acta Astronaut. 1977, 4, 1177–1206. [Google Scholar] [CrossRef]
  23. Chen, L.H.; Chang, H.C. Nonlinear waves on liquid film surfaces-II. Bifurcation analyses of the long-wave equation. Chem. Eng. Sci. 1986, 41, 2477–2486. [Google Scholar] [CrossRef]
  24. Hooper, A.; Grimshaw, R. Nonlinear instability at the interface between two viscous fluids. Phys. Fluids 1985, 28, 37–45. [Google Scholar] [CrossRef]
  25. LaQuey, R.; Mahajan, S.; Rutherford, P.; Tang, W. Nonlinear saturation of the trapped-ion mode. Phys. Rev. Lett. 1975, 34, 391–394. [Google Scholar] [CrossRef] [Green Version]
  26. Benney, D.J. Long waves on liquid films. J. Math. Phys. 1966, 45, 150–155. [Google Scholar] [CrossRef]
  27. Lin, S.P. Finite amplitude side-band stability of a viscous film. J. Fluid Mech. 1974, 63, 417–429. [Google Scholar] [CrossRef]
  28. Li, C.; Chen, G.; Zhao, S. Exact travelling wave solutions to the generalized Kuramoto-Sivashinsky equation. Lat. Am. Appl. Res. 2004, 34, 65–68. [Google Scholar]
  29. Foias, C.; Nicolaenko, B.; Sell, G.R.; Temam, R. Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension. J. Math. Pures Appl. 1988, 67, 197–226. [Google Scholar]
  30. Khalique, C. Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation. Caspian J. Math. Sci. 2012, 1, 109–116. [Google Scholar]
  31. Kudryashov, N.A. Exact solutions of the generalized Kuramoto-Sivashinsky equation. Phys. Lett. A 1990, 147, 287–291. [Google Scholar] [CrossRef]
  32. Nicolaenko, B.; Scheurer, B. Remarks on the Kuramoto-Sivashinsky equation. Physica D 1984, 12, 391–395. [Google Scholar] [CrossRef]
  33. Nicolaenko, B.; Scheurer, B.; Temam, R. Some global dynamical properties of the Kuramoto-Sivashinsky equations: nonlinear stability and attractors. Physica D 1985, 16, 155–183. [Google Scholar] [CrossRef]
  34. Xie, Y. Solving the generalized Benney equation by a combination method. Int. J. Nonlinear Sci. 2013, 15, 350–354. [Google Scholar]
  35. Armaou, A.; Christofides, P. Feedback control of the Kuramoto-Sivashinsky equation. Physica D 2000, 137, 49–61. [Google Scholar] [CrossRef]
  36. Cerpa, E. Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation. Commun. Pure Appl. Anal. 2010, 9, 91–102. [Google Scholar] [CrossRef]
  37. Giacomelli, L.; Otto, F. New bounds for the Kuramoto-Sivashinsky equation. Comm. Pure Appl. Math. 2005, 58, 297–318. [Google Scholar] [CrossRef]
  38. Christofides, P.; Armaou, A. Global stabilization of the Kuramoto-Sivashinsky equation via distributed output feedback control. Syst. Control Lett. 2000, 39, 283–294. [Google Scholar] [CrossRef]
  39. Hu, C.; Temam, R. Robust control of the Kuramoto-Sivashinsky equation. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 2001, 8, 315–338. [Google Scholar]
  40. Liu, W.J.; Krstić, M. Stability enhancement by boundary control in the Kuramoto-Sivashinsky equation. Nonlinear Anal. 2001, 43, 485–507. [Google Scholar] [CrossRef] [Green Version]
  41. Sajjadian, M. The shock profile wave propagation of Kuramoto-Sivashinsky equation and solitonic solutions of generalized Kuramoto-Sivashinsky equation. Acta Univ. Apulensis 2014, 38, 163–176. [Google Scholar]
  42. Biagioni, H.; Bona, J.; Iorio, R.; Scialom, M. On the korteweg-de vries-kuramoto-sivashinsky equation. Adv. Differ. Equ. 1996, 1, 1–20. [Google Scholar]
  43. Coclite, G.M.; di Ruvo, L. Dispersive and diffusive limits for Ostrovsky-Hunter type equations. Nonlinear Differ. Equ. Appl. 2015, 22, 1733–1763. [Google Scholar] [CrossRef] [Green Version]
  44. Coclite, G.M.; di Ruvo, L. Convergence of the Kuramoto-Sinelshchikov equation to the Burgers one. Acta Appl. Math. 2016, 145, 89–113. [Google Scholar] [CrossRef]
  45. Garcia-Ybarra, P.L.; Castillo, J.L.; Velarde, M.G. Bénard–Marangoni convection with a deformable interface and poorly conducting boundaries. Phys. Fluids 1987, 30, 2655–2661. [Google Scholar] [CrossRef]
  46. Garcia-Ybarra, P.; Castillo, J.; Velarde, M. A nonlinear evolution equation for Bénard-Marangoni convection with deformable boundary. Phys. Lett. A 1987, 122, 107–110. [Google Scholar] [CrossRef]
  47. Kamenov, O.Y. Solitary-wave and periodic solutions of the Kuramoto-Velarde dispersive equation. J. Theoret. Appl. Mech. 2016, 46, 65–74. [Google Scholar] [CrossRef] [Green Version]
  48. Rodríguez-Bernal, A. Initial value problem and asymptotic low-dimensional behavior in the Kuramoto-Velarde equation. Nonlinear Anal. Theory Methods Appl. 1992, 19, 643–685. [Google Scholar] [CrossRef]
  49. Pilod, D. Sharp well-posedness results for the Kuramoto-Velarde equation. Commun. Pure Appl. Anal. 2008, 7, 867–881. [Google Scholar] [CrossRef]
  50. Taylor, M.E. Partial differential equations I. Basic theory. In Applied Mathematical Sciences; Antman, S.S., Sirovich, L., Marsden, J.E., Eds.; Springer: New York, NY, USA, 2011; Volume 115. [Google Scholar]
  51. Coclite, G.M.; di Ruvo, L. Existence results for the Kudryashov-Sinelshchikov-Olver equation. Proc. Roy. Soc. Edinburgh Sect. A 2020, in press. [Google Scholar] [CrossRef]
  52. Coclite, G.M.; di Ruvo, L. Convergence of the Ostrovsky equation to the Ostrovsky-Hunter one. J. Differ. Equ. 2014, 256, 3245–3277. [Google Scholar] [CrossRef]
  53. Coclite, G.M.; di Ruvo, L. Oleinik type estimates for the Ostrovsky-Hunter equation. J. Math. Anal. Appl. 2015, 423, 162–190. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Coclite, G.M.; di Ruvo, L. On Classical Solutions for A Kuramoto–Sinelshchikov–Velarde-Type Equation. Algorithms 2020, 13, 77. https://doi.org/10.3390/a13040077

AMA Style

Coclite GM, di Ruvo L. On Classical Solutions for A Kuramoto–Sinelshchikov–Velarde-Type Equation. Algorithms. 2020; 13(4):77. https://doi.org/10.3390/a13040077

Chicago/Turabian Style

Coclite, Giuseppe Maria, and Lorenzo di Ruvo. 2020. "On Classical Solutions for A Kuramoto–Sinelshchikov–Velarde-Type Equation" Algorithms 13, no. 4: 77. https://doi.org/10.3390/a13040077

APA Style

Coclite, G. M., & di Ruvo, L. (2020). On Classical Solutions for A Kuramoto–Sinelshchikov–Velarde-Type Equation. Algorithms, 13(4), 77. https://doi.org/10.3390/a13040077

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop