GA-Adaptive Template Matching for Offline Shape Motion Tracking Based on Edge Detection: IAS Estimation from the SURVISHNO 2019 Challenge Video for Machine Diagnostics Purposes
Abstract
1. Introduction
1.1. Instantaneous Angular Speed (IAS) Review
1.2. Brief Literature Review of Computer Vision
1.3. GA and Template Matching: A Review
2. Materials and Methods
2.1. Data Description: the SURVISHNO 2019 Challenge Video and Its Critical Issues
- Spatial Aliasing related to the rolling shutter effect,
- Temporal Aliasing due to the 30-fps sampling rate given the 10 equal blades of the fan,
- Additional autofocus distortions.
2.2. Matched Filters and Template Matching
- The template is placed at in a matrix of the same size of the search matrix (Equation (7)),
- The entrywise product (also known as Hadamard or Schur product, here “”) is performed finding the matrix (Equation (8))
- The correlation at () is obtained by summing all the components in (Equation (9))
- By letting and vary in the range , the whole cross-correlation matrix is computed.
- (a)
- noise, illumination changes, and occlusions in the search image,
- (b)
- background changes and clutter,
- (c)
- rigid and non-rigid transformations, rotations, and scale changes (i.e., images are a projection of a 3D scene onto a 2D plane),
- (d)
- high computational cost.
2.3. Image Preprocessing
- Image cropping
- Gray monochrome conversion and image binarization (thresholding)
- Edge Detection
2.3.1. Image Cropping
2.3.2. Gray Monochrome Conversion and Image Binarization (Thresholding)
2.3.3. Edge Detection
2.4. GA-adaptive Template Matching
2.4.1. Template Parametric Model
2.4.2. Objective Function
2.4.3. Genetic Algorithm Optimization
- Exploration: the optimizer discovers a wide region of the search space,
- Exploitation: the optimizer “pounds the pavement” on a limited but promising region,
- Reliability: repeatability of the fund solution.
- Population Size: .
- Elite Count: 5%. It defines the number of best individuals selected as a percentage of .
- Crossover Fraction: 80%. It defines the offspring quantity at the next generation as a percentage of . As the total is fixed, the percentage of discarded individuals equals the crossover fraction.
- Default mutation: Shrinking Gaussian. Each newborn features a degree of random mutation which decreases in time according to the linear law: . Where , c , and is the generation index, increasing with time.
- Stopping criterion: maximum number of generations .
2.5. Overall Methodology
- GA optimization of the outer hexagon template (Figure 7a) to match the search image (e.g., Figure 4c).
- ○
- The outer hexagon path is used to make a mask isolating the foreground of interest and improving the next step.
- GA optimization of the inner hexagon template (Figure 7b) to match the search image cropped using the outer hexagon path as mask.
- ○
- The inner hexagon path is used to make a mask for isolating the foreground of interest and improving the next step.
- ○
- The three inner hexagon diagonals are tested to find the diagonal around which the 8.8 logo is reported.
- GA optimization of the 8.8 logo (Figure 7c) to match the search image cropped using the inner hexagon path as a mask.
IAS Estimation
- The analytic signal is computed via Hilbert transform
- The instantaneous frequency is defined as
- From which, a more suitable discrete-time () implementation can be derived [56]
3. Results
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lin, J.; Zhao, M. A review and strategy for the diagnosis of speed-varying machinery. In Proceedings of the 2014 International Conference on Prognostics and Health Management, Cheney, WA, USA, 22–25 June 2014. [Google Scholar]
- Fyfe, K.R.; Munck, E.D.S. Analysis of computed order tracking. MSSP 1997. [Google Scholar] [CrossRef]
- Brandt, A.; Lago, T.; Ahlin, K.; Tuma, J. Main principles and limitations of current order tracking methods. Sound Vib. 2005, 39, 19–22. [Google Scholar]
- Bonnardot, F.; El Badaoui, M.; Randall, R.B.; Daniere, J.; Guillet, F. Use of the acceleration signal of a gearbox in order to perform angular resampling (with limited speed fluctuation). MSSP 2005. [Google Scholar] [CrossRef]
- Coats, M.; Sawalhi, N.; Randall, R.B. Extraction of tacho information from a vibration signal for improved synchronous averaging. Acoustics 2009. [Google Scholar]
- Remond, D.; Antoni, J.; Randall, R.B. Instantaneous Angular Speed (IAS) processing and related angular applications. MSSP 2014, 45, 24–27. [Google Scholar] [CrossRef]
- Peeters, C.; Leclère, Q.; Antoni, J.; Lindahl, P.; Donnal, J.; Leeb, S.; Helsen, J. Review and comparison of tacholess instantaneous speed estimation methods on experimental vibration data. MSSP 2019. [Google Scholar] [CrossRef]
- Antoni, J.; Griffaton, J.; André, H.; Avendaño-Valencia, L.D.; Bonnardot, F.; Cardona-Morales, O.; Castellanos-Dominguez, G.; Daga, A.P.; Leclère, Q.; Vicuña, C.M.; et al. Feedback on the surveillance 8 challenge: vibration-based diagnosis of a safran aircraft engine. MSSP 2017. [Google Scholar] [CrossRef]
- Ben Sasi, A.Y.; Gu, F.; Payne, B.; Ball, A. Instantaneous angular speed monitoring of electric motors. J. Qual. Maint. Eng. 2004. [Google Scholar] [CrossRef]
- Lebaroud, A.; Clerc, G. Diagnosis of Induction Motor Faults Using Instantaneous Frequency Signature Analysis. ICEM 2008. [Google Scholar] [CrossRef]
- Spagnol, M.; Bregant, L.; Boscarol, A. Electrical Induction Motor Higher Harmonics Analysis Based on Instantaneous Angular Speed Measurement. In Proceedings of the Fourth International Conference on Condition Monitoring of Machinery in Non-Stationary Operations, CMMNO’2014, Lyon, France, 15–17 December 2014. [Google Scholar] [CrossRef]
- Yang, J.; Pu, L.; Wang, Z.; Zhou, Y.; Yan, X. Fault detection in a diesel engine by analysing the instantaneous angular speed. MSSP 2001. [Google Scholar] [CrossRef]
- Desbazeille, M.; Randall, R.B.; Guillet, F.; El Badaoui, M.; Hoisnard, C. Model-based diagnosis of large diesel engines based on angular speed variations of the crankshaft. MSSP 2010. [Google Scholar] [CrossRef]
- Chang, Y.; Hu, Y. Monitoring and fault diagnosis system for the diesel engine based on instantaneous speed. ICCAE Conf. 2010. [Google Scholar] [CrossRef]
- Antonopoulos, A.K.; Hountalas, D.T. Effect of instantaneous rotational speed on the analysis of measured diesel engine cylinder pressure data. Energy Convers Manag. 2012. [Google Scholar] [CrossRef]
- Lin, T.; Tan, A.; Ma, L.; Mathew, J. Condition monitoring and fault diagnosis of diesel engines using instantaneous angular speed analysis. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 2014. [Google Scholar] [CrossRef]
- Liu, Y.; Gu, L.; Yang, B.; Wang, S.; Yuan, H. A new evaluation method on hydraulic system using the instantaneous speed fluctuation of hydraulic motor. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 2018. [Google Scholar] [CrossRef]
- Roy, S.K.; Mohanty, A.R.; Kumar, C.S. Fault detection in a multistage gearbox by time synchronous averaging of the instantaneous angular speed. J. Vib. Control 2016. [Google Scholar] [CrossRef]
- Li, B.; Zhang, X. A new strategy of instantaneous angular speed extraction and its application to multistage gearbox fault diagnosis. J. Sound Vib. 2017. [Google Scholar] [CrossRef]
- Zhao, M.; Jia, X.; Lin, J.; Lei, Y.; Lee, J. Instantaneous speed jitter detection via encoder signal and its application for the diagnosis of planetary gearbox. MSSP 2018. [Google Scholar] [CrossRef]
- Liang, L.; Liu, F.; Kong, X.; Li, M.; Xu, G. Application of Instantaneous Rotational Speed to Detect Gearbox Faults Based on Double Encoders. Chin. J. Mech. Eng. 2019. [Google Scholar] [CrossRef]
- Zimroz, R.; Urbanek, J.; Barszcz, T.; Bartelmus, W.; Millioz, F.; Martin, N. Measurement of Instantaneous Shaft Speed by Advanced Vibration Signal Processing—Application to Wind Turbine Gearbox. Metrol. Meas. Syst. 2011. [Google Scholar] [CrossRef]
- Renaudin, L.; Bonnardot, F.; Musy, O.; Doray, J.B.; Rémond, D. Natural roller bearing fault detection by angular measurement of true instantaneous angular speed. MSSP 2010. [Google Scholar] [CrossRef]
- Bourdon, A.; André, H.; Rémond, D. Introducing angularly periodic disturbances in dynamic models of rotating systems under non-stationary conditions. MSSP 2014. [Google Scholar] [CrossRef]
- Lamraoui, M.; Thomas, M.; El Badaoui, M.; Girardin, F. Indicators for monitoring chatter in milling based on instantaneous angular speeds. MSSP 2014. [Google Scholar] [CrossRef]
- Leclere, Q.; André, H.; Antoni, J. A multi-order probabilistic approach for Instantaneous Angular Speed tracking. debriefing of the CMMNO’14 diagnosis contest. MSSP 2016. [Google Scholar] [CrossRef]
- Li, Y.; Gu, F.; Harris, G.; Ball, A.; Bennett, N.; Travis, K. The measurement of instantaneous angular speed. MSSP 2005. [Google Scholar] [CrossRef]
- Sushma Sri, M. A study on motion estimation. Int. J. Mod. Trends Eng. Res. (IJMTER) 2017. [Google Scholar] [CrossRef]
- Torr, P.H.S.; Zisserman, A. Feature Based Methods for Structure and Motion Estimation. ICCV Workshop Vis. Algorithms 1999. [Google Scholar] [CrossRef]
- Irani, M.; Anandan, P. About Direct Methods. ICCV Workshop Vis. Algorithms 1999. [Google Scholar] [CrossRef]
- Egmont-Petersen, M.; de Ridder, D.; Handels, H. Image processing with neural networks—A review. Pattern Recognit. 2002, 35, 2279–2301. [Google Scholar] [CrossRef]
- Tolba, A.; El-Baz, A.; El-Harby, A. Face Recognition: A Literature Review. Int. J. Signal Process. 2005, 2, 88–103. [Google Scholar]
- Solanki, K.; Pittalia, P. Review of Face Recognition Techniques. Int. J. Comput. Appl. 2016, 133, 20–24. [Google Scholar] [CrossRef]
- Brunelli, R. Template Matching Techniques in Computer Vision: Theory and Practice; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Leavers, V.F. Computer Vision: Shape Detection. In Shape Detection in Computer Vision Using the Hough Transform; Springer: London, UK, 1992. [Google Scholar] [CrossRef]
- Talmi, I.; Mechrez, R.; Zelnik-Manor, L. Template Matching with Deformable Diversity Similarity. Available online: http://openaccess.thecvf.com/content_cvpr_2017/html/Talmi_Template_Matching_With_CVPR_2017_paper.html (accessed on 20 December 2019).
- Lee, H.; Kwon, H.; Robinson, R.M.; Nothwang, W.D. DTM: Deformable Template Matching. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016. [Google Scholar]
- Muramatsu, S. Strategy of high-speed template matching and its optimization by using GA. Syst. Comput. Jpn. 2003. [Google Scholar] [CrossRef]
- Karungaru, S.; Fukumi, M.; Akamatsu, N. Face recognition using genetic algorithm based template matching. IEEE Int. Symp. Commun. Inf. Technol. 2004. [Google Scholar] [CrossRef]
- Velasco, H.M.G.; Orellana, C.J.G.; Macías, M.M.; Caballero, R.G.; Sotoca, M.I.A. Application of Repeated GA to Deformable Template Matching in Cattle Images. In Proceedings of the Third International Workshop, AMDO 2004, Palma de Mallorca, Spain, 22–24 September 2004. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Q.; Li, M. A Template Matching Method Based on Genetic Algorithm Optimization. Appl. Mech. Mater. 2012. [Google Scholar] [CrossRef]
- El-Baz, A.; Elnakib, A.; Abou-El-Ghar, M.; Gimel’farb, G.; Falk, R.; Farag, A. Automatic Detection of 2D and 3D Lung Nodules in Chest Spiral CT Scans. Int. J. Biomed. Imaging 2013. [Google Scholar] [CrossRef]
- Kay, S.; Rangaswamy, M. The Ubiquitous Matched Filter: A Tutorial and Application to Radar Detection. In Classical, Semi-classical and Quantum Noise; Cohen, L., Poor, H., Scully, M., Eds.; Springer: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Turin G., L. An introduction to matched filters. IRE Trans. Inf. Theory 1960, 6, 311–329. [Google Scholar] [CrossRef]
- Vleck, J.V.; Middleton, D. A theoretical comparison of the visual, aural, and meter reception of pulsed signals in the presence of noise. J. Appl. Phys. 1946, 17, 940–971. [Google Scholar] [CrossRef]
- North, D.O. An analysis of the factors which determine signal/noise discrimination in pulsed-carrier systems. Proc. IEEE 1943, 51, 1016–1027. [Google Scholar] [CrossRef]
- Mohd, F.Z.; Hoo, S.C.; Shahrel, A.S. Object Shape Recognition in Image for Machine Vision Application. Int. J. Comput. Theory Eng. 2012, 76–80. [Google Scholar] [CrossRef]
- Kumar, V.; Pandey, S.; Pal, A.; Sharma, S. Edge Detection Based Shape Identification. Available online: https://arxiv.org/ftp/arxiv/papers/1604/1604.02030.pdf (accessed on 20 December 2019).
- Chai, T.Y.; Rizon, M.; San, W.; Seong, T. Facial Features for Template Matching Based Face Recognition. Am. J. Appl. Sci. 2009. [Google Scholar] [CrossRef]
- ITU-R recommendation BT.601 standard, revision 7. 2011. Available online: https://www.itu.int/rec/R-REC-BT.601/en (accessed on 20 December 2019).
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Bradley, D.; Roth, G. Adaptive Thresholding using the Integral Image. J. Graph. Tools 2007. [Google Scholar] [CrossRef]
- MATLAB Matworks “imbinarize” function. Available online: https://www.mathworks.com/help/images/ref/imbinarize.html (accessed on 20 December 2019).
- Sobel, I.; Feldman, G. An Isotropic 3x3 Image Gradient Operator. Available online: https://www.researchgate.net/publication/239398674_An_Isotropic_3x3_Image_Gradient_Operator (accessed on 20 December 2019).
- MATLAB Matworks “edge” function. Available online: https://it.mathworks.com/help/images/ref/edge.html (accessed on 20 December 2019).
- Barnes, A.E. The calculation of instantaneous frequency and instantaneous bandwidth. Geophysics 1992, 57, 1396–1524. [Google Scholar] [CrossRef]
Parameter | Description | Parameter | Description |
---|---|---|---|
Center of the outer hexagon (OH) | Distance of 8.8 logo from () | ||
Radius of the inscribing circle (OH) | Deviation from ax slope direction | ||
Rotation of the OH | Logo size = hollow circles radii | ||
Thickness of OH | Logo’s circles radii | ||
Center of the inner hexagon (IH) | Logo’s dot radius | ||
Radius of the inscribing circle (IH) | Logo’s height | ||
Rotation of the IH | Logo’s width | ||
Thickness of the IH | Logo’s width ratio | ||
8.8 intercepting diagonal of IH | Distance of “8” from Logo’s dot |
1 | 1 | 1 | 0 | 0 | |
1 | 0 | 0 | 1 | 1 | |
0 | 1 | 0 | 1 | 1 | |
0 | 0 | 0 | 0 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daga, A.P.; Garibaldi, L. GA-Adaptive Template Matching for Offline Shape Motion Tracking Based on Edge Detection: IAS Estimation from the SURVISHNO 2019 Challenge Video for Machine Diagnostics Purposes. Algorithms 2020, 13, 33. https://doi.org/10.3390/a13020033
Daga AP, Garibaldi L. GA-Adaptive Template Matching for Offline Shape Motion Tracking Based on Edge Detection: IAS Estimation from the SURVISHNO 2019 Challenge Video for Machine Diagnostics Purposes. Algorithms. 2020; 13(2):33. https://doi.org/10.3390/a13020033
Chicago/Turabian StyleDaga, Alessandro Paolo, and Luigi Garibaldi. 2020. "GA-Adaptive Template Matching for Offline Shape Motion Tracking Based on Edge Detection: IAS Estimation from the SURVISHNO 2019 Challenge Video for Machine Diagnostics Purposes" Algorithms 13, no. 2: 33. https://doi.org/10.3390/a13020033
APA StyleDaga, A. P., & Garibaldi, L. (2020). GA-Adaptive Template Matching for Offline Shape Motion Tracking Based on Edge Detection: IAS Estimation from the SURVISHNO 2019 Challenge Video for Machine Diagnostics Purposes. Algorithms, 13(2), 33. https://doi.org/10.3390/a13020033