# Searching via Nonlinear Quantum Walk on the 2D-Grid

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Model

#### 2.1. The Linear Algorithm

Algorithm 1: Searching algorithm for the $2d$-grid |

#### 2.2. Adding a Nonlinearity

Algorithm 2: Searching with a nonlinear algorithm for the $2d$-grid |

## 3. Numerical Results

## 4. Scale Analysis

- A strictly linear regime, when $\delta \left(t\right)=0$, which appears periodically with a period$${T}_{0}\sim 1/\mathsf{\Delta}\lambda \sim {\displaystyle \frac{1}{E}}=O\left(\sqrt{NlogN}\right)$$
- A nonlinear regime, when $\delta \left(t\right)$ is maximum. In this case, $(1+cg\delta \left(t\right))\sim cg\delta \left(t\right)=O\left(\sqrt{NlogN}\right)$ and consequently the period is constant:$${T}_{1}\sim 1/\mathsf{\Delta}\lambda =O\left(1\right).$$

## 5. Discussion

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Grover, L.K. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219. [Google Scholar]
- Childs, A.M.; Goldstone, J. Spatial search by quantum walk. Phys. Rev. A
**2004**, 70, 022314. [Google Scholar] - Venegas-Andraca, S.E. Quantum walks: A comprehensive review. Quantum Inf. Process.
**2012**, 11, 1015–1106. [Google Scholar] - Di Molfetta, G.; Arrighi, P. A quantum walk with both a continuous-time limit and a continuous-spacetime limit. Quantum Inf. Process.
**2020**, 19, 47. [Google Scholar] - Manighalam, M.; Di Molfetta, G. Continuous Time Limit of the DTQW in 2D+ 1 and Plasticity. arXiv
**2020**, arXiv:2007.01425. [Google Scholar] - Ambainis, A. Quantum walk algorithm for element distinctness. SIAM J. Comput.
**2007**, 37, 210–239. [Google Scholar] - Childs, A.M.; Cleve, R.; Deotto, E.; Farhi, E.; Gutmann, S.; Spielman, D.A. Exponential algorithmic speedup by a quantum walk. In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, San Diego, CA, USA, 9–11 June 2003; pp. 59–68. [Google Scholar]
- Childs, A.M. Universal computation by quantum walk. Phys. Rev. Lett.
**2009**, 102, 180501. [Google Scholar] - Hatifi, M.; Di Molfetta, G.; Debbasch, F.; Brachet, M. Quantum walk hydrodynamics. Sci. Rep.
**2019**, 9, 1–7. [Google Scholar] - Di Molfetta, G.; Pérez, A. Quantum walks as simulators of neutrino oscillations in a vacuum and matter. New J. Phys.
**2016**, 18, 103038. [Google Scholar] - Di Molfetta, G.; Brachet, M.; Debbasch, F. Quantum walks as massless Dirac fermions in curved space-time. Phys. Rev. A
**2013**, 88, 042301. [Google Scholar] - Arrighi, P.; Di Molfetta, G.; Márquez-Martín, I.; Pérez, A. Dirac equation as a quantum walk over the honeycomb and triangular lattices. Phys. Rev. A
**2018**, 97, 062111. [Google Scholar] - Roget, M.; Guillet, S.; Arrighi, P.; Di Molfetta, G. Grover Search as a Naturally Occurring Phenomenon. Phys. Rev. Lett.
**2020**, 124, 180501. [Google Scholar] - Childs, A.M.; Gosset, D.; Webb, Z. Universal computation by multiparticle quantum walk. Science
**2013**, 339, 791–794. [Google Scholar] [PubMed][Green Version] - Ebrahimi Kahou, M.; Feder, D.L. Quantum search with interacting Bose-Einstein condensates. Phys. Rev. A
**2013**, 88, 032310. [Google Scholar] [CrossRef][Green Version] - Kevrekidis, P.G.; Frantzeskakis, D.J.; Carretero-González, R. Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; Volume 45. [Google Scholar]
- Alberti, A.; Wimberger, S. Quantum walk of a Bose-Einstein condensate in the Brillouin zone. Phys. Rev. A
**2017**, 96, 023620. [Google Scholar] - Abrams, D.S.; Lloyd, S. Nonlinear Quantum Mechanics Implies Polynomial-Time Solution forNP-Complete and PProblems. Phys. Rev. Lett.
**1998**, 81, 3992–3995. [Google Scholar] [CrossRef][Green Version] - Di Molfetta, G.; Debbasch, F.; Brachet, M. Nonlinear Optical Galton Board: Thermalization and continuous limit. Phys. Rev. E
**2015**, 92, 042923. [Google Scholar] - Navarrete-Benlloch, C.; Pérez, A.; Roldán, E. Nonlinear optical Galton board. Phys. Rev. A
**2007**, 75. [Google Scholar] [CrossRef][Green Version] - Shikano, Y.; Wada, T.; Horikawa, J. Discrete-time quantum walk with feed-forward quantum coin. Sci. Rep.
**2014**, 4, 4427. [Google Scholar] - Meyer, D.A.; Wong, T.G. Nonlinear quantum search using the Gross–Pitaevskii equation. New J. Phys.
**2013**, 15, 063014. [Google Scholar] [CrossRef][Green Version] - Childs, A.M.; Goldstone, J. Spatial search and the Dirac equation. Phys. Rev. A
**2004**, 70, 042312. [Google Scholar] - Ambainis, A.; Kempe, J.; Rivosh, A. Coins Make Quantum Walks Faster. arXiv
**2004**, arXiv:0402107. [Google Scholar] - Foulger, I.; Gnutzmann, S.; Tanner, G. Quantum search on graphene lattices. Phys. Rev. Lett.
**2014**, 112, 070504. [Google Scholar] [PubMed][Green Version] - Childs, A.M.; Ge, Y. Spatial search by continuous-time quantum walks on crystal lattices. Phys. Rev. A
**2014**, 89. [Google Scholar] [CrossRef][Green Version] - Susskind, L. Lattice fermions. Phys. Rev. D
**1977**, 16, 3031. [Google Scholar] - Chakraborty, S.; Novo, L.; Roland, J. Finding a marked node on any graph via continuous-time quantum walks. Phys. Rev. A
**2020**, 102, 022227. [Google Scholar] [CrossRef] - Kohl, R.; Biswas, A.; Milovic, D.; Zerrad, E. Optical soliton perturbation in a non-Kerr law media. Opt. Laser Technol.
**2008**, 40, 647–662. [Google Scholar] - Zhang, Z.y.; Liu, Z.h.; Miao, X.j.; Chen, Y.z. New exact solutions to the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity. Appl. Math. Comput.
**2010**, 216, 3064–3072. [Google Scholar] - Einstein, A. Quantentheorie des einatomigen idealen Gases. SB Preuss. Akad. Wiss. Phys. Math. Klasse
**1925**, 8, 3–14. [Google Scholar] - Bose, S.N. Plancks gesetz und lichtquantenhypothese. Z. Physik
**1924**, 26, 178–181. [Google Scholar] - Erdos, L.; Schlein, B.; Yau, H.T. Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate. Commun. Pure Appl. Math.
**2006**, 59, 12–1659. [Google Scholar] - Cornell, E.A.; Wieman, C.E. Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys.
**2002**, 74, 875. [Google Scholar] - Nikuni, T.; Oshikawa, M.; Oosawa, A.; Tanaka, H. Bose-Einstein condensation of dilute magnons in TlCuCl 3. Phys. Rev. Lett.
**2000**, 84, 5868. [Google Scholar] [PubMed][Green Version] - O’Callaghan, J. Quantum clouds in orbit. New Sci.
**2020**, 246, 16. [Google Scholar] - Xie, D.; Deng, T.S.; Xiao, T.; Gou, W.; Chen, T.; Yi, W.; Yan, B. Topological Quantum Walks in Momentum Space with a Bose-Einstein Condensate. Phys. Rev. Lett.
**2020**, 124, 050502. [Google Scholar] [CrossRef][Green Version] - Meyer, D.A.; Wong, T.G. Quantum search with general nonlinearities. Phys. Rev. A
**2014**, 89, 012312. [Google Scholar] - Farhi, E.; Gutmann, S. Analog analogue of a digital quantum computation. Phys. Rev. A
**1998**, 57, 2403. [Google Scholar] - Bollinger, J.J.; Itano, W.M.; Wineland, D.J.; Heinzen, D.J. Optimal frequency measurements with maximally correlated states. Phys. Rev. A
**1996**, 54, R4649–R4652. [Google Scholar] [CrossRef] [PubMed][Green Version]

**Figure 1.**The $2d$—grid and its factorisation into cells (grey squares). The marked vertex (circled) is disconnected from its neighbors.

**Figure 3.**The probability $p\left(t\right)=|\langle \mathsf{\Gamma}|{e}^{-iHt}{|s\rangle |}^{2}$ for different values of c−$N=900$.

**Figure 6.**$N=900$—Probability over $|\mathsf{\Gamma}\rangle $ for different values of c and numerical resolution of Equation (43).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Di Molfetta, G.; Herzog, B.
Searching via Nonlinear Quantum Walk on the 2D-Grid. *Algorithms* **2020**, *13*, 305.
https://doi.org/10.3390/a13110305

**AMA Style**

Di Molfetta G, Herzog B.
Searching via Nonlinear Quantum Walk on the 2D-Grid. *Algorithms*. 2020; 13(11):305.
https://doi.org/10.3390/a13110305

**Chicago/Turabian Style**

Di Molfetta, Giuseppe, and Basile Herzog.
2020. "Searching via Nonlinear Quantum Walk on the 2D-Grid" *Algorithms* 13, no. 11: 305.
https://doi.org/10.3390/a13110305