Single Machine Scheduling Problem with Interval Processing Times and Total Completion Time Objective
Abstract
:1. Introduction
2. Problem Setting and the Related Results
3. The Optimality Box
3.1. An Example of the Problem
3.2. Properties of a Job Permutation Based on Blocks
Algorithm 1 |
Input: Segments for the jobs . The permutation . |
Output: The optimality box for the permutation . |
Step 1: FOR to n DO set , END FOR |
set , |
Step 2: FOR to n DO |
IF THEN set ELSE set END FOR |
Step 3: FOR to 1 STEP DO |
IF THEN set ELSE set END FOR |
Step 4: Set , |
Step 5: FOR to n DO set , |
END FOR |
Step 6: Set STOP. |
3.3. The Largest Relative Perimeter of the Optimality Box
4. An Algorithm for Constructing a Job Permutation with the Largest Relative Perimeter of the Optimality Box
Algorithm 2 |
Input: Segments for the jobs . |
Output: The permutation with the largest relative perimeter . |
Step 1: IF the condition of Theorem 3 holds |
THEN for any permutation STOP. |
Step 2: IF the condition of Theorem 4 holds |
THEN construct the permutation such that |
using Procedure 2 described in the proof of Theorem 4 STOP. |
Step 3: ELSE determine the set B of all blocks using the |
-Procedure 1 described in the proof of Lemma 1 |
Step 4: Index the blocks according to increasing |
left bounds of their cores (Lemma 3) |
Step 5: IF THEN problem is called problem |
(Theorem 5) set GOTO step 8 ELSE set |
Step 6: IF there exist two adjacent blocks and such |
that ; let r denote the minimum of the above index |
in the set THEN decompose the problem P into |
subproblem with the set of jobs and subproblem |
with the set of jobs using Lemma 4; |
set , , GOTO step 7 ELSE |
Step 7: IF THEN GOTO step 9 ELSE |
Step 8: Construct the permutation with the largest relative perimeter |
using Procedure 3 described in the proof of |
Theorem 5 IF or GOTO step 12 ELSE |
Step 9: IF there exists a block in the set B containing more than one |
non-fixed jobs THEN construct the permutation with the |
largest relative perimeter for the problem |
using Procedure 5 described in Section 4.1 GOTO step 11 |
Step 10: ELSE construct the permutation with the largest relative |
perimeter for the problem using |
-Procedure 4 described in the proof of Theorem 6 |
Step 11: Construct the optimality box for the permutation |
using Algorithm 1 IF and THEN |
set , , , |
GOTO step 6 ELSE IF THEN GOTO step 8 |
Step 12: IF THEN set , determine the permutation |
and the optimality box |
GOTO step 13 |
ELSE |
Step 13: The optimality box has the largest value of |
STOP. |
4.1. Procedure 5 for the Problem with Blocks Including More Than One Non-Fixed Jobs
4.2. The Application of Procedure 5 to the Small Example
5. An Approximate Solution to the Problem
Algorithm 3 |
Input: Segments for the jobs . |
Output: The permutation and optimality box , which provide |
the minimal value of the error function . |
Step 1: IF the condition of Theorem 3 holds |
THEN for any permutation |
and the equality holds STOP. |
Step 2: IF the condition of Theorem 4 holds |
THEN using Procedure 2 construct |
the permutation such that both equalities |
and hold STOP. |
Step 3: ELSE determine the set B of all blocks using the |
-Procedure 1 described in the proof of Lemma 1 |
Step 4: Index the blocks according to increasing |
left bounds of their cores (Lemma 3) |
Step 5: IF THEN problem is called problem |
(Theorem 5) set GOTO step 8 ELSE set |
Step 6: IF there exist two adjacent blocks and such |
that ; let r denote the minimum of the above index |
in the set THEN decompose the problem P into |
subproblem with the set of jobs and subproblem |
with the set of jobs using Lemma 4; |
set , , GOTO step 7 ELSE |
Step 7: IF THEN GOTO step 9 ELSE |
Step 8: Construct the permutation with the minimal value of |
the error function using Procedure 3 |
IF or GOTO step 12 ELSE |
Step 9: IF there exists a block in the set B containing more than one |
non-fixed jobs THEN construct the permutation with |
the minimal value of the error function for the problem |
using Procedure 5 GOTO step 11 |
Step 10: ELSE construct the permutation with the minimal value of the |
error function for the problem using Procedure 3 |
Step 11: Construct the optimality box for the permutation |
using Algorithm 1 IF and THEN |
set , , , |
GOTO step 6 ELSE IF THEN GOTO step 8 |
Step 12: IF THEN set , determine the permutation |
and the optimality box: |
GOTO step 13 |
ELSE |
Step 13: The optimality box has the minimal value |
of the error function STOP. |
6. Computational Results
7. Concluding Remarks
Author Contributions
Conflicts of Interest
References
- Davis, W.J.; Jones, A.T. A real-time production scheduler for a stochastic manufacturing environment. Int. J. Prod. Res. 1988, 1, 101–112. [Google Scholar] [CrossRef]
- Pinedo, M. Scheduling: Theory, Algorithms, and Systems; Prentice-Hall: Englewood Cliffs, NJ, USA, 2002. [Google Scholar]
- Daniels, R.L.; Kouvelis, P. Robust scheduling to hedge against processing time uncertainty in single stage production. Manag. Sci. 1995, 41, 363–376. [Google Scholar] [CrossRef]
- Sabuncuoglu, I.; Goren, S. Hedging production schedules against uncertainty in manufacturing environment with a review of robustness and stability research. Int. J. Comput. Integr. Manuf. 2009, 22, 138–157. [Google Scholar] [CrossRef]
- Sotskov, Y.N.; Werner, F. Sequencing and Scheduling with Inaccurate Data; Nova Science Publishers: Hauppauge, NY, USA, 2014. [Google Scholar]
- Pereira, J. The robust (minmax regret) single machine scheduling with interval processing times and total weighted completion time objective. Comput. Oper. Res. 2016, 66, 141–152. [Google Scholar] [CrossRef]
- Grabot, B.; Geneste, L. Dispatching rules in scheduling: A fuzzy approach. Int. J. Prod. Res. 1994, 32, 903–915. [Google Scholar] [CrossRef]
- Kasperski, A.; Zielinski, P. Possibilistic minmax regret sequencing problems with fuzzy parameteres. IEEE Trans. Fuzzy Syst. 2011, 19, 1072–1082. [Google Scholar] [CrossRef]
- Özelkan, E.C.; Duckstein, L. Optimal fuzzy counterparts of scheduling rules. Eur. J. Oper. Res. 1999, 113, 593–609. [Google Scholar] [CrossRef]
- Braun, O.; Lai, T.-C.; Schmidt, G.; Sotskov, Y.N. Stability of Johnson’s schedule with respect to limited machine availability. Int. J. Prod. Res. 2002, 40, 4381–4400. [Google Scholar] [CrossRef]
- Sotskov, Y.N.; Egorova, N.M.; Lai, T.-C. Minimizing total weighted flow time of a set of jobs with interval processing times. Math. Comput. Model. 2009, 50, 556–573. [Google Scholar] [CrossRef]
- Sotskov, Y.N.; Lai, T.-C. Minimizing total weighted flow time under uncertainty using dominance and a stability box. Comput. Oper. Res. 2012, 39, 1271–1289. [Google Scholar] [CrossRef]
- Graham, R.L.; Lawler, E.L.; Lenstra, J.K.; Kan, A.H.G.R. Optimization and Approximation in Deterministic Sequencing and Scheduling. Ann. Discret. Appl. Math. 1979, 5, 287–326. [Google Scholar]
- Smith, W.E. Various optimizers for single-stage production. Nav. Res. Logist. Q. 1956, 3, 59–66. [Google Scholar] [CrossRef]
- Lai, T.-C.; Sotskov, Y.N.; Egorova, N.G.; Werner, F. The optimality box in uncertain data for minimising the sum of the weighted job completion times. Int. J. Prod. Res. 2017. [CrossRef]
- Burdett, R.L.; Kozan, E. Techniques to effectively buffer schedules in the face of uncertainties. Comput. Ind. Eng. 2015, 87, 16–29. [Google Scholar] [CrossRef]
- Goren, S.; Sabuncuoglu, I. Robustness and stability measures for scheduling: Single-machine environment. IIE Trans. 2008, 40, 66–83. [Google Scholar] [CrossRef]
- Kasperski, A.; Zielinski, P. A 2-approximation algorithm for interval data minmax regret sequencing problems with total flow time criterion. Oper. Res. Lett. 2008, 36, 343–344. [Google Scholar] [CrossRef]
- Kouvelis, P.; Yu, G. Robust Discrete Optimization and Its Application; Kluwer Academic Publishers: Boston, MA, USA, 1997. [Google Scholar]
- Lu, C.-C.; Lin, S.-W.; Ying, K.-C. Robust scheduling on a single machine total flow time. Comput. Oper. Res. 2012, 39, 1682–1691. [Google Scholar] [CrossRef]
- Yang, J.; Yu, G. On the robust single machine scheduling problem. J. Comb. Optim. 2002, 6, 17–33. [Google Scholar] [CrossRef]
- Harikrishnan, K.K.; Ishii, H. Single machine batch scheduling problem with resource dependent setup and processing time in the presence of fuzzy due date. Fuzzy Optim. Decis. Mak. 2005, 4, 141–147. [Google Scholar] [CrossRef]
- Allahverdi, A.; Aydilek, H.; Aydilek, A. Single machine scheduling problem with interval processing times to minimize mean weighted completion times. Comput. Oper. Res. 2014, 51, 200–207. [Google Scholar] [CrossRef]
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
6 | 7 | 6 | 1 | 8 | 17 | 15 | 24 | 25 | 26 | |
11 | 11 | 12 | 19 | 16 | 21 | 35 | 28 | 27 | 27 |
n | / | / | CPU-Time (s) | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
100 | 1 | 0.08715 | 0.197231 | 1.6 | 2.263114 | 1.27022 | 0.046798 |
100 | 5 | 0.305088 | 0.317777 | 1.856768 | 1.041589 | 1.014261 | 0.031587 |
100 | 10 | 0.498286 | 0.500731 | 1.916064 | 1.001077 | 1.000278 | 0.033953 |
500 | 1 | 0.095548 | 0.208343 | 1.6 | 2.18052 | 1.0385 | 0.218393 |
500 | 5 | 0.273933 | 0.319028 | 1.909091 | 1.164623 | 1.017235 | 0.2146 |
500 | 10 | 0.469146 | 0.486097 | 1.948988 | 1.036133 | 1.006977 | 0.206222 |
1000 | 1 | 0.093147 | 0.21632 | 1.666667 | 2.322344 | 1.090832 | 0.542316 |
1000 | 5 | 0.264971 | 0.315261 | 1.909091 | 1.189795 | 1.030789 | 0.542938 |
1000 | 10 | 0.472471 | 0.494142 | 1.952143 | 1.045866 | 1.000832 | 0.544089 |
5000 | 1 | 0.095824 | 0.217874 | 1.666667 | 2.273683 | 1.006018 | 7.162931 |
5000 | 5 | 0.264395 | 0.319645 | 1.909091 | 1.208965 | 1.002336 | 7.132647 |
5000 | 10 | 0.451069 | 0.481421 | 1.952381 | 1.06729 | 1.00641 | 7.137556 |
10,000 | 1 | 0.095715 | 0.217456 | 1.666667 | 2.271905 | 1.003433 | 25.52557 |
10,000 | 5 | 0.26198 | 0.316855 | 1.909091 | 1.209463 | 1.003251 | 25.5448 |
10,000 | 10 | 0.454655 | 0.486105 | 1.952381 | 1.069175 | 1.003809 | 25.50313 |
Minimum | 0.08715 | 0.197231 | 1.6 | 1.001077 | 1.000278 | 0.031587 | |
Average | 0.278892 | 0.339619 | 1.827673 | 1.489703 | 1.033012 | 6.692502 | |
Maximum | 0.498286 | 0.500731 | 1.952381 | 2.322344 | 1,27022 | 25.5448 |
n | N-Fix Jobs | Laws | Per | / | / | CPU-Time (s) | |||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Class 2 | |||||||||
50 | 1 | 0 | 1.2.3 | 1.023598 | 2.401925 | 1.027 | 2.346551 | 1,395708 | 0,020781 |
100 | 1 | 0 | 1.2.3 | 0.608379 | 0.995588 | 0.9948 | 1.636461 | 1.618133 | 0.047795 |
500 | 1 | 0 | 1.2.3 | 0.265169 | 0.482631 | 0.9947 | 1.820092 | 1.630094 | 0.215172 |
1000 | 1 | 0 | 1.2.3 | 0.176092 | 0.252525 | 0.9952 | 1.434053 | 1.427069 | 0.535256 |
5000 | 1 | 0 | 1.2.3 | 0.111418 | 0.14907 | 0.9952 | 1.33793 | 1.089663 | 7.096339 |
10,000 | 1 | 0 | 1.2.3 | 0.117165 | 0.13794 | 0.9948 | 1.177313 | 1.004612 | 25.28328 |
Minimum | 0.111418 | 0.13794 | 0.9947 | 1.177313 | 1.004612 | 0.020781 | |||
Average | 0.383637 | 0.736613 | 0.99494 | 1.6254 | 1.399944 | 5.533104 | |||
Maximum | 1.023598 | 2.401925 | 0.9952 | 2.346551 | 1.630094 | 25.28328 | |||
Class 3 | |||||||||
50 | 3 | 1 | 1.2.3 | 0.636163 | 0.657619 | 1.171429 | 1.033727 | 1.004246 | 0.047428 |
100 | 3 | 1 | 1.2.3 | 1.705078 | 1.789222 | 1.240238 | 1.049349 | 1.009568 | 0.066329 |
500 | 3 | 1 | 1.2.3 | 0.332547 | 0.382898 | 1.205952 | 1.151412 | 1.138869 | 0.249044 |
1000 | 3 | 1 | 1.2.3 | 0.286863 | 0.373247 | 1.400833 | 1.301132 | 1.101748 | 0.421837 |
5000 | 3 | 1 | 1.2.3 | 0.246609 | 0.323508 | 1.380833 | 1.311825 | 1.140728 | 2.51218 |
10,000 | 3 | 1 | 1.2.3 | 0.26048 | 0.338709 | 1.098572 | 1.300324 | 1.095812 | 5.46782 |
Minimum | 0.246609 | 0.323508 | 1.098572 | 1.033727 | 1.004246 | 0.047428 | |||
Average | 0.577957 | 0.644201 | 1.249643 | 1.191295 | 1.0818286 | 1.460773 | |||
Maximum | 1.705078 | 1.789222 | 1.400833 | 1.311825 | 1.140728 | 5.46782 | |||
Class 4 | |||||||||
50 | 3 | 1 | 1 | 0.467885 | 0.497391 | 1.17369 | 1.063064 | 1.035412 | 0.043454 |
100 | 3 | 1 | 1 | 0.215869 | 0.226697 | 1.317222 | 1.05016 | 1.031564 | 0.067427 |
500 | 3 | 1 | 1 | 0.128445 | 0.15453 | 1.424444 | 1.203083 | 1.17912 | 0.256617 |
1000 | 3 | 1 | 1 | 0.111304 | 0.118882 | 1.307738 | 1.068077 | 1.042852 | 0.50344 |
5000 | 3 | 1 | 1 | 0.076917 | 0.085504 | 1.399048 | 1.111631 | 1.046061 | 2.612428 |
10,000 | 3 | 1 | 1 | 0.067836 | 0.076221 | 1.591905 | 1.123606 | 1.114005 | 4.407236 |
Minimum | 0.067836 | 0.076221 | 1.17369 | 1.05016 | 1.031564 | 0.043454 | |||
Average | 0.178043 | 0.193204 | 1.369008 | 1.10327 | 1.074836 | 1.3151 | |||
Maximum | 0.467885 | 0.497391 | 1.591905 | 1.203083 | 1.17912 | 4.407236 | |||
Class 5 | |||||||||
50 | 3 | 2 | 1.2.3 | 1.341619 | 1.508828 | 1.296195 | 1.124632 | 1.035182 | 0.049344 |
100 | 3 | 2 | 1.2.3 | 0.700955 | 0.867886 | 1.271976 | 1.238149 | 1.037472 | 0.070402 |
500 | 3 | 2 | 1.2.3 | 0.182378 | 0.241735 | 1.029 | 1.32546 | 1.296414 | 0.255463 |
1000 | 3 | 2 | 1.2.3 | 0.098077 | 0.11073 | 1.473451 | 1.129006 | 1.104537 | 0.509969 |
5000 | 3 | 2 | 1.2.3 | 0.074599 | 0.084418 | 1.204435 | 1.131624 | 1.056254 | 2.577595 |
10,000 | 3 | 2 | 1.2.3 | 0.064226 | 0.074749 | 1.359181 | 1.163846 | 1.042676 | 5.684847 |
Minimum | 0.064226 | 0.074749 | 1.029 | 1.124632 | 1.035182 | 0.049344 | |||
Average | 0.410309 | 0.481391 | 1.272373 | 1.185453 | 1.095422 | 1.524603 | |||
Maximum | 1.341619 | 1.508828 | 1.473451 | 1.32546 | 1.296414 | 5.684847 | |||
Class 6 | |||||||||
50 | 4 | 2 | 1.2.3 | 0.254023 | 0.399514 | 1.818905 | 1.57275 | 1.553395 | 0.058388 |
100 | 4 | 2 | 1.2.3 | 0.216541 | 0.260434 | 1.868278 | 1.202704 | 1.03868 | 0.091854 |
500 | 4 | 2 | 1.2.3 | 0.081932 | 0.098457 | 1.998516 | 1.201691 | 1.1292 | 0.365865 |
1000 | 4 | 2 | 1.2.3 | 0.06145 | 0.067879 | 1.933984 | 1.104622 | 1.061866 | 0.713708 |
5000 | 4 | 2 | 1.2.3 | 0.050967 | 0.060394 | 1.936453 | 1.184953 | 1.048753 | 3.602502 |
10,000 | 4 | 2 | 1.2.3 | 0.045303 | 0.05378 | 2.332008 | 1.187101 | 1.038561 | 7.426986 |
Minimum | 0.045303 | 0.05378 | 1.818905 | 1.104622 | 1.038561 | 0.058388 | |||
Average | 0.118369 | 0.156743 | 1.981357 | 1.242304 | 1.1450756 | 2.043217 | |||
Maximum | 0.254023 | 0.399514 | 2.332008 | 1.57275 | 1.553395 | 7.426986 | |||
Class 7 | |||||||||
50 | 2 | 2–4 | 1.2.3 | 4.773618 | 6.755918 | 0.262946 | 1.415262 | 1.308045 | 0.039027 |
100 | 2 | 2–4 | 1.2.3 | 3.926612 | 4.991843 | 0.224877 | 1.271285 | 1.160723 | 0.059726 |
500 | 2 | 2–6 | 1.2.3 | 3.811794 | 4.600017 | 0.259161 | 1.206785 | 1.132353 | 0.185564 |
1000 | 2 | 2–8 | 1.2.3 | 3.59457 | 4.459855 | 0.337968 | 1.24072 | 1.08992 | 0.474514 |
5000 | 2 | 2–8 | 1.2.3 | 3.585219 | 4.297968 | 0.261002 | 1.198802 | 1.031319 | 2.778732 |
10,000 | 2 | 2–8 | 1.2.3 | 3.607767 | 4.275581 | 0.299311 | 1.185105 | 1.013096 | 5.431212 |
Minimum | 3.585219 | 4.275581 | 0.224877 | 1.185105 | 1.013096 | 0.039027 | |||
Average | 3.883263 | 4.896864 | 0.274211 | 1.252993 | 1.122576 | 1.494796 | |||
Maximum | 4.773618 | 6.755918 | 0.337968 | 1.415262 | 1.308045 | 5.431212 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sotskov, Y.N.; Egorova, N.G. Single Machine Scheduling Problem with Interval Processing Times and Total Completion Time Objective. Algorithms 2018, 11, 66. https://doi.org/10.3390/a11050066
Sotskov YN, Egorova NG. Single Machine Scheduling Problem with Interval Processing Times and Total Completion Time Objective. Algorithms. 2018; 11(5):66. https://doi.org/10.3390/a11050066
Chicago/Turabian StyleSotskov, Yuri N., and Natalja G. Egorova. 2018. "Single Machine Scheduling Problem with Interval Processing Times and Total Completion Time Objective" Algorithms 11, no. 5: 66. https://doi.org/10.3390/a11050066
APA StyleSotskov, Y. N., & Egorova, N. G. (2018). Single Machine Scheduling Problem with Interval Processing Times and Total Completion Time Objective. Algorithms, 11(5), 66. https://doi.org/10.3390/a11050066