Approaches to Multiple-Attribute Decision-Making Based on Pythagorean 2-Tuple Linguistic Bonferroni Mean Operators
Abstract
:1. Introduction
2. Preliminaries
2.1. P2TLSs
- If , then .
- If , then
- (1)
- if , then ;
- (2)
- if , then .
2.2. BM Operator
3. The P2TLWBM Operator and P2TLWGBM Operator
3.1. P2TLWBM Operator
3.2. P2TLWGBM Operator
- (1)
- Idempotency. If , then
- (2)
- Monotonicity. Let and be two sets of P2TLNs. If , and and hold for all i, then
- (3)
- Boundedness. If and , then
4. Models for MADM with P2TLNs
5. Numerical Example and Comparative Analysis
5.1. Numerical Example
5.2. Influence of the Parameter on the Final Result
5.3. Comparative Analysis
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–356. [Google Scholar] [CrossRef]
- Xu, Z.S. Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 2007, 15, 1179–1187. [Google Scholar]
- Xu, Z.S.; Yager, R.R. Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 2006, 35, 417–433. [Google Scholar] [CrossRef]
- Xu, Z.S.; Yager, R.R. Dynamic intuitionistic fuzzy multi-attribute decision making. Int. J. Approx. Reason. 2008, 48, 246–262. [Google Scholar] [CrossRef]
- Wei, G.W. Some geometric aggregation functions and their application to dynamic multiple attribute decision making in intuitionistic fuzzy setting. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2009, 17, 179–196. [Google Scholar] [CrossRef]
- Wei, G.W. Some induced geometric aggregation operators with intuitionistic fuzzy information and their application to group decision making. Appl. Soft Comput. 2010, 10, 423–431. [Google Scholar] [CrossRef]
- Wei, G.W.; Zhao, X.F. Some induced correlated aggregating operators with intuitionistic fuzzy information and their application to multiple attribute group decision making. Expert Syst. Appl. 2012, 39, 2026–2034. [Google Scholar] [CrossRef]
- Yu, D.J.; Wu, Y.Y.; Lu, T. Intuitionistic fuzzy prioritized operators and their application in group decision making. Knowl. Based Syst. 2012, 30, 57–66. [Google Scholar] [CrossRef]
- Xu, Z.S. Approaches to multiple attribute group decision making based on intuitionistic fuzzy power aggregation operators. Knowl. Based Syst. 2011, 24, 749–760. [Google Scholar] [CrossRef]
- Xu, Z.S.; Chen, Q. A multi-criteria decision making procedure based on intuitionistic fuzzy bonferroni means. J. Syst. Sci. Syst. Eng. 2011, 20, 217–228. [Google Scholar] [CrossRef]
- Xu, Z.S.; Xia, M.M. Induced generalized intuitionistic fuzzy operators. Knowl. Based Syst. 2011, 24, 197–209. [Google Scholar] [CrossRef]
- Yu, D. Intuitionistic fuzzy geometric Heronian mean aggregation operators. Appl. Soft Comput. 2013, 13, 1235–1246. [Google Scholar] [CrossRef]
- Zhao, X.F.; Wei, G.W. Some intuitionistic fuzzy einstein hybrid aggregation operators and their application to multiple attribute decision making. Knowl. Based Syst. 2013, 37, 472–479. [Google Scholar] [CrossRef]
- Yager, R.R. Pythagorean fuzzy subsets. In Proceedings of the Joint IFsA World Congress and NAFIPs Annual Meeting, Edmonton, AB, Canada, 24–28 June 2013; pp. 57–61. [Google Scholar]
- Yager, R.R. Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 2014, 22, 958–965. [Google Scholar] [CrossRef]
- Zhang, X.L.; Xu, Z. Extension of TOPsIs to multiple criteria decision making with Pythagorean fuzzy sets. Int. J. Intell. Syst. 2014, 29, 1061–1078. [Google Scholar] [CrossRef]
- Peng, X.; Yang, Y. Some results for Pythagorean Fuzzy sets. Int. J. Intell. Syst. 2015, 30, 1133–1160. [Google Scholar] [CrossRef]
- Beliakov, G.; James, S. Averaging aggregation functions for preferences expressed as Pythagorean membership grades and fuzzy orthopairs. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Beijing, China, 6–11 July 2014; pp. 298–305. [Google Scholar]
- Reformat, M.; Yager, R.R. Suggesting recommendations using pythagorean fuzzy sets illustrated using netflix movie data. In Information Processing and Management of Uncertainty in Knowledge-Based Systems; Springer: Cham, Switzerland, 2014; pp. 546–556. [Google Scholar]
- Gou, X.J.; Xu, Z.; Ren, P. The properties of continuous pythagorean fuzzy information. Int. J. Intell. Syst. 2016, 31, 401–424. [Google Scholar] [CrossRef]
- Ren, P.J.; Xu, Z.; Gou, X. Pythagorean fuzzy TODIM approach to multi-criteria decision making. Appl. Soft Comput. 2016, 42, 246–259. [Google Scholar] [CrossRef]
- Garg, H. A new generalized pythagorean fuzzy information aggregation using einstein operations and its application to decision making. Int. J. Intell. Syst. 2016, 31, 886–920. [Google Scholar] [CrossRef]
- Zeng, S.Z.; Chen, J.P.; Li, X. A hybrid method for pythagorean fuzzy multiple-criteria decision making. Int. J. Inf. Technol. Decis. Mak. 2016, 15, 403–422. [Google Scholar] [CrossRef]
- Garg, H. A novel accuracy function under interval-valued Pythagorean fuzzy environment for solving multicriteria decision making problem. J. Intell. Fuzzy Syst. 2016, 31, 529–540. [Google Scholar] [CrossRef]
- Liang, D.; Xu, Z.; Darko, A.P. Projection model for fusing the information of pythagorean fuzzy multicriteria group decision making based on geometric bonferroni mean. Int. J. Intell. Syst. 2017, 32, 966–987. [Google Scholar] [CrossRef]
- Peng, X.D.; Yuan, H.Y.; Yang, Y. Pythagorean fuzzy information measures and their applications. Int. J. Intell. Syst. 2017, 32, 991–1029. [Google Scholar] [CrossRef]
- Garg, H. Generalized pythagorean fuzzy geometric aggregation operators using einsteint-norm andt-conorm for multicriteria decision-making process. Int. J. Intell. Syst. 2017, 32, 597–630. [Google Scholar] [CrossRef]
- Wei, G.W.; Lu, M. Pythagorean fuzzy maclaurin symmetric mean operators in multiple attribute decision making. Int. J. Intell. Syst. 2016. [Google Scholar] [CrossRef]
- Wei, G.W. Pythagorean fuzzy interaction aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 2119–2132. [Google Scholar] [CrossRef]
- Wei, G.W.; Lu, M. Pythagorean fuzzy power aggregation operators in multiple attribute decision making. Int. J. Intell. Syst. 2018, 33, 169–186. [Google Scholar] [CrossRef]
- Wei, G.W.; Lu, M. Dual hesitant Pythagorean fuzzy Hamacher aggregation operators in multiple attribute decision making. Arch. Control Sci. 2017, 27, 365–395. [Google Scholar] [CrossRef]
- Lu, M.; Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Hesitant pythagorean fuzzy hamacher aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 1105–1117. [Google Scholar] [CrossRef]
- Wei, G.W.; Lu, M.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Pythagorean 2-tuple linguistic aggregation operators in multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 1129–1142. [Google Scholar] [CrossRef]
- Bonferroni, C. Sulle medie multiple di potenze. Boll. Mat. Ital. 1950, 5, 267–270. [Google Scholar]
- Zhu, B.; Xu, Z.S.; Xia, M.M. Hesitant fuzzy geometric Bonferroni means. Inf. Sci. 2012, 205, 72–85. [Google Scholar] [CrossRef]
- Xia, M.M.; Xu, Z.s.; Zhu, B. Generalized intuitionistic fuzzy Bonferroni means. Int. J. Intell. Syst. 2012, 27, 23–47. [Google Scholar] [CrossRef]
- Xu, Z.s.; Yager, R.R. Intuitionistic fuzzy Bonferroni means. IEEE Trans. Syst. Man Cybern. 2011, 41, 568–578. [Google Scholar]
- Yager, R.R. On generalized Bonferroni mean operators for multi-criteria aggregation. Int. J. Approx. Reason. 2009, 50, 1279–1286. [Google Scholar] [CrossRef]
- Wei, G.W. Picture 2-tuple linguistic Bonferroni mean operators and their application to multiple attribute decision making. Int. J. Fuzzy Syst. 2017, 19, 997–1010. [Google Scholar] [CrossRef]
- Jiang, X.P.; Wei, G.W. Some bonferroni mean operators with 2-Tuple linguistic information and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2014, 27, 2153–2162. [Google Scholar]
- Wei, G.W.; Zhao, X.F.; Lin, R.; Wang, H.J. Uncertain linguistic Bonferroni mean operators and their application to multiple attribute decision making. Appl. Math. Model. 2013, 37, 5277–5285. [Google Scholar] [CrossRef]
- Herrera, F.; Martinez, L. A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 2000, 8, 746–752. [Google Scholar]
- Herrera, F.; Martinez, L. An approach for combining linguistic and numerical information based on the 2-tuple fuzzy linguistic representation model in decision-making. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2000, 8, 539–562. [Google Scholar] [CrossRef]
- Merigó, J.M.; Casanovas, M.; Martínez, L. Linguistic aggregation operators for linguistic decision making based on the Dempster-shafer theory of Evidence. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2010, 18, 287–304. [Google Scholar] [CrossRef]
- Wei, G.W.; Lin, R.; Zhao, X.F.; Wang, H.J. Models for multiple attribute group decision making with 2-tuple linguistic assessment information. Int. J. Comput. Intell. Syst. 2010, 3, 315–324. [Google Scholar] [CrossRef]
- Wei, G.W. Extension of TOPSIS method for 2-tuple linguistic multiple attribute group decision making with incomplete weight information. Knowl. Inf. Syst. 2010, 25, 623–634. [Google Scholar] [CrossRef]
- Wei, G.W. A method for multiple attribute group decision making based on the ET-WG and ET-OWG operators with 2-tuple linguistic information. Expert Syst. Appl. 2010, 37, 7895–7900. [Google Scholar] [CrossRef]
- Wei, G.W. Grey relational analysis method for 2-tuple linguistic multiple attribute group decision making with incomplete weight information. Expert Syst. Appl. 2011, 38, 4824–4828. [Google Scholar] [CrossRef]
- Wei, G.W. Some generalized aggregating operators with linguistic information and their application to multiple attribute group decision making. Comput. Ind. Eng. 2011, 61, 32–38. [Google Scholar] [CrossRef]
- Wei, G.W.; Zhao, X.F. Some dependent aggregation operators with 2-tuple linguistic information and their application to multiple attribute group decision making. Expert Syst. Appl. 2012, 39, 5881–5886. [Google Scholar] [CrossRef]
- Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Picture 2-tuple linguistic aggregation operators in multiple attribute decision making. Soft Comput. 2016, 1–14. [Google Scholar] [CrossRef]
- Lu, M.; Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Bipolar 2-tuple linguistic aggregation operators in multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 1197–1207. [Google Scholar] [CrossRef]
- Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Hesitant fuzzy linguistic arithmetic aggregation operators in multiple attribute decision making. Iran. J. Fuzzy Syst. 2016, 13, 1–16. [Google Scholar]
- Wei, G.W. Interval valued hesitant fuzzy uncertain linguistic aggregation operators in multiple attribute decision making. Int. J. Mach. Learn. Cybern. 2016, 7, 1093–1114. [Google Scholar] [CrossRef]
- Cabrerizo, F.J.; Al-Hmouz, R.; Morfeq, A.; Balamash, A.S.; Martínez, M.A.; Herrera-Viedma, E. Soft consensus measures in group decision making using unbalanced fuzzy linguistic information. Soft Comput. 2017, 21, 3037–3050. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, H. Managing multi-granularity linguistic information in qualitative group decision making: An overview. Granul. Comput. 2016, 1, 21–35. [Google Scholar] [CrossRef]
- Mendel, J.M. A comparison of three approaches for estimating (synthesizing) an interval type-2 fuzzy set model of a linguistic term for computing with words. Granul. Comput. 2016, 1, 59–69. [Google Scholar] [CrossRef]
- Xu, Z.; Gou, X. An overview of interval-valued intuitionistic fuzzy information aggregations and applications. Granul. Comput. 2017, 2, 13–39. [Google Scholar] [CrossRef]
- Das, S.; Kar, S.; Pal, T. Robust decision making using intuitionistic fuzzy numbers. Granul. Comput. 2017, 2, 41–54. [Google Scholar] [CrossRef]
- Meng, S.; Liu, N.; He, Y. GIFIHIA operator and its application to the selection of cold chain logistics enterprises. Granul. Comput. 2017, 2, 187–197. [Google Scholar] [CrossRef]
- Chatterjee, K.; Kar, S. Unified Granular-number based AHP-VIKOR multi-criteria decision framework. Granul. Comput. 2017, 2, 199–221. [Google Scholar] [CrossRef]
- Qin, J. Interval type-2 fuzzy Hamy mean operators and their application in multiple criteria decision making. Granul. Comput. 2017, 2, 249–269. [Google Scholar] [CrossRef]
- Wang, C.; Fu, X.; Meng, S.; He, Y. Multi-attribute decision making based on the SPIFGIA operators. Granul. Comput. 2017, 2, 321–331. [Google Scholar] [CrossRef]
- Liu, P.; You, X. Probabilistic linguistic TODIM approach for multiple attribute decision making. Granul. Comput. 2017, 2, 333–342. [Google Scholar] [CrossRef]
- Wei, G.W. Picture fuzzy Hamacher aggregation operators and their application to multiple attribute decision making. Fundam. Inform. 2018, 157, 271–320. [Google Scholar] [CrossRef]
- Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Projection models for multiple attribute decision making with picture fuzzy information. Int. J. Mach. Learn. Cybern. 2016, 1–7. [Google Scholar] [CrossRef]
- Wei, G.W. Picture uncertain linguistic Bonferroni mean operators and their application to multiple attribute decision making. Kybernetes 2017, 46, 1777–1800. [Google Scholar] [CrossRef]
- Wei, G.W. Some cosine similarity measures for picture fuzzy sets and their applications to strategic decision making. Informatica 2017, 28, 547–564. [Google Scholar] [CrossRef]
- Wei, G.W. Interval-valued dual hesitant fuzzy uncertain linguistic aggregation operators in multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 1881–1893. [Google Scholar] [CrossRef]
- Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Hesitant bipolar fuzzy aggregation operators in multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 1119–1128. [Google Scholar] [CrossRef]
- Wei, G.W. Picture fuzzy aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 713–724. [Google Scholar] [CrossRef]
- Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. A linear assignment method for multiple criteria decision analysis with hesitant fuzzy sets based on fuzzy measure. Int. J. Fuzzy Syst. 2017, 19, 607–614. [Google Scholar] [CrossRef]
- Wei, G.W.; Wang, J.M. A comparative study of robust efficiency analysis and data envelopment analysis with imprecise data. Expert Syst. Appl. 2017, 81, 28–38. [Google Scholar] [CrossRef]
- Wu, S.J.; Wei, G.W. Pythagorean fuzzy Hamacher aggregation operators and their application to multiple attribute decision making. Int. J. Knowl. Based Intell. Eng. Syst. 2017, 21, 189–201. [Google Scholar] [CrossRef]
- Lu, M.; Wei, G.W. Pythagorean uncertain linguistic aggregation operators for multiple attribute decision making. Int. J. Knowl. Based Intell. Eng. Syst. 2017, 21, 165–179. [Google Scholar] [CrossRef]
- Wei, G.W. Picture fuzzy cross-entropy for multiple attribute decision making problems. J. Bus. Econ. Manag. 2016, 17, 491–502. [Google Scholar] [CrossRef]
- Wei, G.W. Approaches to interval intuitionistic trapezoidal fuzzy multiple attribute decision making with incomplete weight information. Int. J. Fuzzy Syst. 2015, 17, 484–489. [Google Scholar] [CrossRef]
- Wei, G.W.; Chen, J.; Wang, J.M. Stochastic efficiency analysis with a reliability consideration. Omega 2014, 48, 1–9. [Google Scholar] [CrossRef]
- Wang, H.J.; Zhao, X.F.; Wei, G.W. Dual hesitant fuzzy aggregation operators in multiple attribute decision making. J. Intell. Fuzzy Syst. 2014, 26, 2281–2290. [Google Scholar]
- Wei, G.W.; Zhang, N. A multiple criteria hesitant fuzzy decision making with Shapley value-based VIKOR method. J. Intell. Fuzzy Syst. 2014, 26, 1065–1075. [Google Scholar]
- Zhao, X.F.; Lin, R.; Wei, G.W. Hesitant triangular fuzzy information aggregation based on Einstein operations and their application to multiple attribute decision making. Expert Syst. Appl. 2014, 41, 1086–1094. [Google Scholar] [CrossRef]
- Wei, G.W.; Wang, J.M.; Chen, J. Potential optimality and robust optimality in multiattribute decision analysis with incomplete information: A comparative study. Decis. Support Syst. 2013, 55, 679–684. [Google Scholar] [CrossRef]
- Wei, G.W.; Zhao, X.F.; Lin, R. Some hesitant interval-valued fuzzy aggregation operators and their applications to multiple attribute decision making. Knowl. Based Syst. 2013, 46, 43–53. [Google Scholar] [CrossRef]
- Zhang, N.; Wei, G.W. Extension of VIKOR method for decision making problem based on hesitant fuzzy set. Appl. Math. Model. 2013, 37, 4938–4947. [Google Scholar] [CrossRef]
- Wei, G.W. Hesitant Fuzzy prioritized operators and their application to multiple attribute group decision making. Knowl. Based Syst. 2012, 31, 176–182. [Google Scholar] [CrossRef]
C1 | C2 | C3 | C4 | |
---|---|---|---|---|
O1 | <(s4, 0), (0.50, 0.80)> | <(s2, 0), (0.60, 0.50)> | <(s2, 0), (0.30, 0.60)> | <(s3, 0), (0.60, 0.70)> |
O2 | <(s2, 0), (0.70, 0.50)> | <(s4, 0), (0.70, 0.40)> | <(s1, 0), (0.60, 0.20)> | <(s2, 0), (0.40, 0.60)> |
O3 | <(s6, 0), (0.70, 0.50)> | <(s2, 0), (0.50, 0.70)> | <(s5, 0), (0.50, 0.30)> | <(s4, 0), (0.60, 0.20)> |
O4 | <(s5, 0), (0.80, 0.20)> | <(s5, 0), (0.60, 0.30)> | <(s7, 0), (0.40, 0.50)> | <(s1, 0), (0.60, 0.60)> |
O5 | <(s3, 0), (0.60, 0.40)> | <(s1, 0), (0.40, 0.70)> | <(s3, 0), (0.70, 0.50)> | <(s2, 0), (0.60, 0.80)> |
P2TLWBM | P2TLWGBM | |
---|---|---|
O1 | <(s3, −0.0074), (0.5466, 0.1451)> | <(s3, −0.2501), (0.1911, 0.6979)> |
O2 | <(s2, 0.2572), (0.6090, 0.1754)> | <(s2, −0.1848), (0.1808, 0.5302)> |
O3 | <(s5, −0.2511), (0.6039, 0.1618)> | <(s4, 0.423), (0.1865, 0.4975)> |
O4 | <(s5, 0.2024), (0.6531, 0.1813)> | <(s3, 0.4517), (0.1658, 0.5350)> |
O5 | <(s3, −0.4388), (0.6320, 0.1415)> | <(s2, 0.3488), (0.1744, 0.7056)> |
P2TLWBM | P2TLWGBM | |
---|---|---|
O1 | (s2, −0.0882) | (s1, −0.2445) |
O2 | (s2, −0.4875) | (s1, −0.3179) |
O3 | (s3, 0.1782) | (s2, −0.2589) |
O4 | (s4, −0.3748) | (s1, 0.2793) |
O5 | (s2, −0.2335) | (s1, −0.3746) |
Order | |
---|---|
P2TLWBM | O4 > O3 > O1 > O5 > O2 |
P2TLWGBM | O3 > O4 > O1 > O2 > O5 |
(t, r) | S(O1) | S(O2) | S(O3) | S(O4) | S(O5) | Ordering |
---|---|---|---|---|---|---|
(1, 1) | (s2, −0.4113) | (s1, 0.1968) | (s3, −0.0685) | (s3, −0.4157) | (s2, 0.4669) | O3 > O4 > O1 > O5 > O2 |
(2, 2) | (s2, −0.2156) | (s1, 0.3525) | (s3, 0.0627) | (s3, 0.2016) | (s2, −0.3252) | O4 > O3 > O1 > O5 > O2 |
(3, 3) | (s2, −0.0882) | (s2, −0.4875) | (s3, 0.1782) | (s4, −0.3748) | (s2, −0.2335) | O4 > O3 > O1 > O5 > O2 |
(4, 4) | (s2, 0.0032) | (s2, −0.3322) | (s3, 0.2805) | (s4, −0.0706) | (s2, −0.1699) | O4 > O3 > O1 > O5 > O2 |
(5, 5) | (s2, 0.0749) | (s2, −0.1888) | (s3, 0.3718) | (s4, 0.1607) | (s2, −0.122) | O4 > O3 > O1 > O5 > O2 |
(6, 6) | (s2, 0.1342) | (s2, −0.0624) | (s3, 0.4534) | (s4, 0.3439) | (s2, −0.0839) | O4 > O3 > O1 > O2 > O5 |
(7, 7) | (s2, 0.1847) | (s2, 0.0459) | (s4, −0.4732) | (s4, 0.4928) | (s2, −0.0527) | O4 > O3 > O1 > O2 > O5 |
(8, 8) | (s2, 0.2283) | (s2, 0.1373) | (s4, −0.4073) | (s5, −0.3846) | (s2, −0.0262) | O4 > O3 > O1 > O2 > O5 |
(9, 9) | (s2, 0.2664) | (s2, 0.2142) | (s4, −0.3482) | (s5, −0.2825) | (s2, −0.0038) | O4 > O3 > O1 > O2 > O5 |
(10, 10) | (s2, 0.2999) | (s2, 0.2793) | (s4, −0.295) | (s5, −0.1959) | (s2, 0.0155) | O4 > O3 > O1 > O2 > O5 |
(t, r) | S(O1) | S(O2) | S(O3) | S(O4) | S(O5) | Ordering |
---|---|---|---|---|---|---|
(1, 1) | (s1, −0.1432) | (s1, −0.2053) | (s2, 0.1454) | (s1, 0.4929) | (s1, −0.1851) | O3 > O4 > O1 > O5 > O2 |
(2, 2) | (s1, −0.1993) | (s1, −0.2756) | (s2, −0.0883) | (s1, 0.3561) | (s1, −0.3002) | O3 > O4 > O1 > O2 > O5 |
(3, 3) | (s1, −0.2445) | (s1, −0.3179) | (s2, −0.2589) | (s1, 0.2793) | (s1, −0.3746) | O3 > O4 > O1 > O2 > O5 |
(4, 4) | (s1, −0.2793) | (s1, −0.3433) | (s2, −0.3763) | (s1, 0.236) | (s1, −0.4211) | O3 > O4 > O1 > O2 > O5 |
(5, 5) | (s1, −0.3062) | (s1, −0.3593) | (s2, −0.4583) | (s1, 0.2095) | (s1, −0.4513) | O3 > O4 > O1 > O2 > O5 |
(6, 6) | (s1, −0.3275) | (s1, −0.3699) | (s1, 0.4819) | (s1, 0.1924) | (s1, −0.4715) | O3 > O4 > O1 > O2 > O5 |
(7, 7) | (s1, −0.3448) | (s1, −0.3774) | (s1, 0.4371) | (s1, 0.1801) | (s1, −0.4861) | O3 > O4 > O1 > O2 > O5 |
(8, 8) | (s1, −0.3592) | (s1, −0.3828) | (s1, 0.4023) | (s1, 0.1712) | (s1, −0.497) | O3 > O4 > O1 > O2 > O5 |
(9, 9) | (s1, −0.3713) | (s1, −0.3869) | (s1, 0.3746) | (s1, 0.1641) | (s0, 0.4947) | O3 > O4 > O1 > O2 > O5 |
(10,10) | (s1, −0.3816) | (s1, −0.3902) | (s1, 0.3519) | (s1, 0. 1585) | (s0, 0.4879) | O3 > O4 > O1 > O2 > O5 |
Order | |
---|---|
P2TLWA | O3 > O4 > O5 > O1 > O2 |
P2TLWG | O3 > O4 > O5 > O1 > O2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Huang, Y.; Wei, G. Approaches to Multiple-Attribute Decision-Making Based on Pythagorean 2-Tuple Linguistic Bonferroni Mean Operators. Algorithms 2018, 11, 5. https://doi.org/10.3390/a11010005
Tang X, Huang Y, Wei G. Approaches to Multiple-Attribute Decision-Making Based on Pythagorean 2-Tuple Linguistic Bonferroni Mean Operators. Algorithms. 2018; 11(1):5. https://doi.org/10.3390/a11010005
Chicago/Turabian StyleTang, Xiyue, Yuhan Huang, and Guiwu Wei. 2018. "Approaches to Multiple-Attribute Decision-Making Based on Pythagorean 2-Tuple Linguistic Bonferroni Mean Operators" Algorithms 11, no. 1: 5. https://doi.org/10.3390/a11010005
APA StyleTang, X., Huang, Y., & Wei, G. (2018). Approaches to Multiple-Attribute Decision-Making Based on Pythagorean 2-Tuple Linguistic Bonferroni Mean Operators. Algorithms, 11(1), 5. https://doi.org/10.3390/a11010005