Tailoring the Dielectric Layer Structure for Enhanced Performance of Organic Field-Effect Transistors: The Use of a Sandwiched Polar Dielectric Layer
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Device Preparation
3.2. Device Characterization
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gelinck, G.; Heremans, P.; Nomoto, K.; Anthopoulos, T.D. Organic transistors in optical displays and microelectronic applications. Adv. Mater. 2010, 22, 3778–3798. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, D.H.; Kim, J.Y.; Yoo, B.; Chung, J.W.; Park, J.I.; Lee, B.L.; Jung, J.Y.; Park, J.S.; Koo, B.; et al. Reliable and uniform thin-film transistor arrays based on inkjet-printed polymer semiconductors for full color reflective displays. Adv. Mater. 2013, 25, 5886–5892. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.L.; Lin, W.C.; Chang, H.S.; Lin, Y.Z.; Huang, B.R. Effects of the F4TCNQ-doped pentacene interlayers on performance improvement of top-contact pentacene-based organic thin-film transistors. Materials 2016, 9, 46. [Google Scholar] [CrossRef]
- Fujisaki, Y.; Koga, H.; Nakajima, Y.; Nakata, M.; Tsuji, H.; Yamamoto, T.; Kurita, T.; Nogi, M.; Shimidzu, N. Transparent nanopaper-based flexible organic thin-film transistor array. Adv. Funct. Mater. 2014, 24, 1657–1663. [Google Scholar] [CrossRef]
- Hyun, W.J.; Secor, E.B.; Rojas, G.A.; Hersam, M.C.; Francis, L.F.; Frisbie, C.D. All-printed, foldable organic thin-film transistors on glassine paper. Adv. Mater. 2015, 27, 7058–7064. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Yu, X.; Zhang, L.; Zeng, H. Ammonia gas sensor based on pentacene organic field-effect transistor. Sens. Actuators B Chem. 2012, 173, 133–138. [Google Scholar] [CrossRef]
- Han, S.; Zhuang, X.; Shi, W.; Yang, X.; Li, L.; Yu, J. Poly (3-hexylthiophene)/polystyrene (P3HT/PS) blends based organic field-effect transistor ammonia gas sensor. Sens. Actuators B Chem. 2016, 225, 10–15. [Google Scholar] [CrossRef]
- Shi, W.; Yu, X.; Zheng, Y.; Yu, J. DNA based chemical sensor for the detection of nitrogen dioxide enabled by organic field-effect transistor. Sens. Actuators B-Chem. 2016, 222, 1003–1011. [Google Scholar] [CrossRef]
- Minamiki, T.; Minami, T.; Kurita, R.; Niwa, O.; Wakida, S.; Fukuda, K.; Kumaki, D.; Tokito, S. A label-free immunosensor for IgG based on an extended-gate type organic field effect transistor. Materials 2014, 7, 6843–6852. [Google Scholar] [CrossRef]
- Ortiz, R.P.; Facchetti, A.; Marks, T.J. High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem. Rev. 2010, 110, 205–239. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chen, L.; Gadinski, M.R.; Zhang, S.; Zhang, G.; Li, H.; Haque, A.; Chen, L.; Jackson, T.; Wang, Q. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 2015, 523, 576–579. [Google Scholar] [CrossRef] [PubMed]
- Pecunia, V.; Banger, K.; Sirringhaus, H. High-performance solution-processed amorphous-oxide-semiconductor TFTs with organic polymeric gate dielectrics. Adv. Electron. Mater. 2015, 1, 1400024. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Martinez, M.A.; Crosby, A.J.; Briseno, A.L. Rubrene crystal field-effect mobility modulation via conducting channel wrinkling. Nat. Commun. 2015, 6, 6948–6947. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Giri, G.; Ayzner, A.L.; Zoombelt, A.P.; Mannsfeld, S.C.B.; Chen, J.; Nordlund, D.; Toney, M.F.; Huang, J.; Bao, Z. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat. Commun. 2015, 5, 3005–3009. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Fabiano, S.; Himmelberger, S.; Puzinas, S.; Crispin, X.; Salleo, A.; Berggren, M. Experimental evidence that short-range intermolecular aggregation is sufficient for efficient charge transport in conjugated polymers. Proc. Natl. Acad. Sci. USA 2015, 112, 10599–10604. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Yu, X.; Shi, W.; Zhuang, X.; Yu, J. Solvent-dependent electrical properties improvement of organic field-effect transistor based on disordered conjugated polymer/insulator blends. Org. Electron. 2015, 27, 160–166. [Google Scholar] [CrossRef]
- Wong, C.Y.; Cotts, B.L.; Wu, H.; Ginsberg, N.S. Exciton dynamics reveal aggregates with intermolecular order at hidden interfaces in solution-cast organic semiconducting film. Nat. Commun. 2015, 6, 5946–5947. [Google Scholar] [CrossRef] [PubMed]
- Yagi, M.; Ito, N.; Kawasaki, M.; Shimomura, T. Semiconducting properties of p- and n-type organic nanofiber/poly(methyl methacrylate) composite films for film rectifier. Synth. Met. 2016, 213, 1–6. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiao, J.; Gao, S.; Hu, F.; He, D.; Wu, B.; Yang, Z.; Xu, B.; Li, Y.; Shi, Y.; et al. Probing carrier transport and structure-property relationship of highly ordered organic semiconductors at the two-dimensional limit. Phys. Rev. Lett. 2016, 116, 016602. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.D.; Chang, J.W.; Wen, T.C.; Guo, T.F. Manipulating the hysteresis in poly(vinyl alcohol)-dielectric organic field-effect transistors toward memory elements. Adv. Funct. Mater. 2013, 23, 4206–4214. [Google Scholar] [CrossRef]
- Lee, S.; Koo, B.; Shin, J.; Lee, E.; Park, H.; Kim, H. Effect of hydroxyl groups in polymeric dielectrics on organic transistor performance. Appl. Phys. Lett. 2006, 88, 162109. [Google Scholar] [CrossRef]
- Orgiu, E.; Locci, S.; Fraboni, B.; Scavetta, E.; Lugli, P.; Bonfiglio, A. Analysis of the hysteresis in organic thin-film transistors with polymeric gate dielectric. Org. Electron. 2011, 12, 477–485. [Google Scholar] [CrossRef]
- Hwang, D.K.; Lee, K.; Kim, J.H.; Im, S.; Park, J.H.; Kim, E. Comparative studies on the stability of polymer versus SiO2 gate dielectrics for pentacene thin-film transistors. Appl. Phys. Lett. 2006, 89, 093507. [Google Scholar] [CrossRef]
- Egginger, M.; Vladu, M.I.; Schwödiauer, R.; Tanda, A.; Frischauf, I.; Bauer, S.; Sariciftci, N.S. Mobile ionic impurities in poly(vinyl alcohol) gate dielectric: Possible source of the hysteresis in organic field-effect transistors. Adv. Mater. 2008, 20, 1018–1022. [Google Scholar] [CrossRef]
- Ukah, N.B.; Senanayak, S.P.; Adil, D.; Knotts, G.; Granstrom, J.; Narayan, K.S.; Guha, S. Enhanced mobility and environmental stability in all organic field-effect transistors: The role of high dipole moment solvent. J. Polym. Sci. Part B Polym. Phys. 2013, 51, 1533–1542. [Google Scholar] [CrossRef]
- Ukah, N.B.; Granstrom, J.; Gari, R.R.S.; King, G.M.; Guha, S. Low-operating voltage and stable organic field-effect transistors with poly (methyl methacrylate) gate dielectric solution deposited from a high dipole moment solvent. Appl. Phys. Lett. 2011, 99, 243302. [Google Scholar] [CrossRef]
- Subbarao, N.V.V.; Gedda, M.; Iyer, P.K.; Goswami, D.K. Enhanced environmental stability induced by effective polarization of a polar dielectric layer in a trilayer dielectric system of organic field-effect transistors: A quantitative study. ACS Appl. Mater. Interfaces 2015, 7, 1915–1924. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, C.J.; Yi, G.; Choi, M.S.; Park, S.K. Low-temperature solution-processed gate dielectrics for high-performance organic thin film transistors. Materials 2015, 8, 6926–6934. [Google Scholar] [CrossRef]
- Arias, A.C.; MacKenzie, J.D.; McCulloch, I.; Rivnay, J.; Salleo, A. Materials and applications for large area electronics: Solution-based approaches. Chem. Rev. 2010, 110, 3–24. [Google Scholar] [CrossRef] [PubMed]
- Pauli, M.; Zschieschang, U.; Barcelos, I.D.; Klauk, H.; Malachias, A. Tailoring the dielectric layer structure for enhanced carrier mobility in organic transistors: The use of hybrid inorganic/organic multilayer dielectrics. Adv. Electron. Mater. 2016. [Google Scholar] [CrossRef]
- Klauk, H. Organic thin-film transistors. Chem. Soc. Rev. 2010, 39, 2643–2666. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Yu, J.S.; Yu, X.G.; Shi, W. Polymer dielectric layer functionality in organic field-effect transistor based ammonia gas sensor. Org. Electron. 2013, 14, 3453–3459. [Google Scholar] [CrossRef]
- Kola, S.; Sinha, J.; Katz, H.E. Organic transistors in the new decade: Toward n-channel, printed, and stabilized devices. J. Polym. Sci. Part B Polym. Phys. 2012, 50, 1090–1120. [Google Scholar] [CrossRef]
- Yang, J.; Yan, D.; Jones, T.S. Molecular template growth and its applications in organic electronics and optoelectronics. Chem. Rev. 2015, 115, 5570–5603. [Google Scholar] [CrossRef] [PubMed]
- Pham, S.T.; Tada, H. Magnetoluminescence of light-emitting field-effect transistors based on alpha sexithiophene. Appl. Phys. Lett. 2014, 104, 133301. [Google Scholar] [CrossRef]
- Lee, C.S.; Yin, W.; Holt, A.P.; Sangoro, J.R.; Sokolov, A.P.; Dadmun, M.D. Rapid and facile formation of P3HT organogels via spin coating: Tuning functional properties of organic electronic thin films. Adv. Funct. Mater. 2015, 25, 5848–5857. [Google Scholar] [CrossRef]
- Horowitz, G.; Garnier, F.; Yassar, A.; Hajlaoui, R.; Koukl, F. Field-effect transistor made with a sexithiophene single crystal. Adv. Mater. 1996, 8, 52–54. [Google Scholar] [CrossRef]
- Zhang, F.; Di, C.; Berdunov, N.; Hu, Y.; Hu, Y.; Gao, X.; Meng, Q.; Sirringhaus, H.; Zhu, D. Ultrathin film organic transistors: Precise control of semiconductor thickness via spin-coating. Adv. Mater. 2013, 25, 1401–1407. [Google Scholar] [CrossRef] [PubMed]
Dielectric Structure | μ (cm2V−1s−1) | VT (V) | SS (V/dec) | On/Off Ratio |
---|---|---|---|---|
PMMA | 0.17 ± 0.005 | −16 ± 4.0 | 5.0 ± 0.2 | 2.4 × 103 |
PMMA/PVP/PMMA | 0.45 ± 0.200 | −10 ± 2.0 | 3.8 ± 0.2 | 1.1 × 104 |
PMMA/PVA/PMMA | 0.51 ± 0.150 | −2 ± 0.5 | 1.5 ± 0.2 | 3.5 × 105 |
Dielectric Structure | μ (cm2V−1s−1) | VT (V) | SS (V/dec) | On/Off Ratio |
---|---|---|---|---|
PMMA | 0.03 ± 0.01 | 25 ± 5 | 6.0 ± 0.2 | 5.0 × 102 |
PMMA/PVP/PMMA | 0.11 ± 0.02 | 18 ± 4 | 5 ± 0.2 | 2.1 × 103 |
PMMA/PVA/PMMA | 0.43 ± 0.11 | 10 ± 2 | 4 ± 0.2 | 2.1 × 104 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.; Yang, X.; Zhuang, X.; Yu, J.; Li, L. Tailoring the Dielectric Layer Structure for Enhanced Performance of Organic Field-Effect Transistors: The Use of a Sandwiched Polar Dielectric Layer. Materials 2016, 9, 545. https://doi.org/10.3390/ma9070545
Han S, Yang X, Zhuang X, Yu J, Li L. Tailoring the Dielectric Layer Structure for Enhanced Performance of Organic Field-Effect Transistors: The Use of a Sandwiched Polar Dielectric Layer. Materials. 2016; 9(7):545. https://doi.org/10.3390/ma9070545
Chicago/Turabian StyleHan, Shijiao, Xin Yang, Xinming Zhuang, Junsheng Yu, and Lu Li. 2016. "Tailoring the Dielectric Layer Structure for Enhanced Performance of Organic Field-Effect Transistors: The Use of a Sandwiched Polar Dielectric Layer" Materials 9, no. 7: 545. https://doi.org/10.3390/ma9070545
APA StyleHan, S., Yang, X., Zhuang, X., Yu, J., & Li, L. (2016). Tailoring the Dielectric Layer Structure for Enhanced Performance of Organic Field-Effect Transistors: The Use of a Sandwiched Polar Dielectric Layer. Materials, 9(7), 545. https://doi.org/10.3390/ma9070545