Next Article in Journal
Towards a Consensus View on Understanding Nanomaterials Hazards and Managing Exposure: Knowledge Gaps and Recommendations
Next Article in Special Issue
Alginate-Based Biomaterials for Regenerative Medicine Applications
Previous Article in Journal
Quinacridone-Diketopyrrolopyrrole-Based Polymers for Organic Field-Effect Transistors
Previous Article in Special Issue
Covalently Bonded Chitosan on Graphene Oxide via Redox Reaction
Open AccessArticle

Thermo-Mechanical Behavior of Textile Heating Fabric Based on Silver Coated Polymeric Yarn

Textiles Research Group, School of Materials, The University of Manchester, Manchester M13 9PL, UK
*
Author to whom correspondence should be addressed.
Materials 2013, 6(3), 1072-1089; https://doi.org/10.3390/ma6031072
Received: 31 December 2012 / Revised: 6 March 2013 / Accepted: 13 March 2013 / Published: 20 March 2013
(This article belongs to the Special Issue Advances in Multifunctional Materials)
This paper presents a study conducted on the thermo-mechanical properties of knitted structures, the methods of manufacture, effect of contact pressure at the structural binding points, on the degree of heating. The test results also present the level of heating produced as a function of the separation between the supply terminals. The study further investigates the rate of heating and cooling of the knitted structures. The work also presents the decay of heating properties of the yarn due to overheating. Thermal images were taken to study the heat distribution over the surface of the knitted fabric. A tensile tester having constant rate of extension was used to stretch the fabric. The behavior of temperature profile of stretched fabric was observed. A comparison of heat generation by plain, rib and interlock structures was studied. It was observed from the series of experiments that there is a minimum threshold force of contact at binding points of a knitted structure is required to pass the electricity. Once this force is achieved, stretching the fabric does not affect the amount of heat produced. View Full-Text
Keywords: elector-textile; silver; polymeric yarn; thermo-mechanical behavior; wearable; heating; knitted; antifreeze; protective clothing elector-textile; silver; polymeric yarn; thermo-mechanical behavior; wearable; heating; knitted; antifreeze; protective clothing
Show Figures

Figure 1

MDPI and ACS Style

Hamdani, S.T.A.; Potluri, P.; Fernando, A. Thermo-Mechanical Behavior of Textile Heating Fabric Based on Silver Coated Polymeric Yarn. Materials 2013, 6, 1072-1089.

Show more citation formats Show less citations formats

Article Access Map

1
Only visits after 24 November 2015 are recorded.
Back to TopTop