Next Article in Journal
A Novel Fractional Order Model for the Dynamic Hysteresis of Piezoelectrically Actuated Fast Tool Servo
Previous Article in Journal
Photocatalytic Water Splitting for Hydrogen Production with Novel Y2MSbO7 (M = Ga, In, Gd) under Visible Light Irradiation
Open AccessArticle

Influence of pH and Chloride Concentration on the Corrosion Behavior of Unalloyed Copper in NaCl Solution: A Comparative Study Between the Micro and Macro Scales

Department of Analytical Chemistry, Ghent University, Krijgslaan 281-S12, Ghent 9000, Belgium
*
Author to whom correspondence should be addressed.
Materials 2012, 5(12), 2439-2464; https://doi.org/10.3390/ma5122439
Received: 14 September 2012 / Revised: 26 October 2012 / Accepted: 16 November 2012 / Published: 23 November 2012
The effects of pH and chloride concentration on the electrochemical corrosion of copper in aqueous sodium chloride (NaCl) media were studied at the micro scale using a microcapillary droplet cell and at the macro scale using a conventional large scale cell. Using an experimental design strategy, electrochemical response surface models of copper versus pH and NaCl concentration were constructed with the minimum number of experiments required. Results show that the electrochemical behavior of copper under corrosive media shows significant differences between the micro and macro scale experiments. At the micro scale, the pit initiation of copper occurs at more negative potentials for high NaCl concentrations and alkaline pH values. Also, the micro scale potentiostatic measurements indicate higher stabilised passive currents at high NaCl concentrations and low (acidic) pH values. At the macro scale, the pH is shown to have a greater influence on the corrosion potential. The chloride concentration is the most significant factor in the passive current case while at the micro scale the effect of these two factors on the passive current was found to be the same. The surface morphology of the formed patina on the corroded copper in both micro and macro systems reveal a more significant role of the chloride concentration on the structure and the grain size of the patinas. Finally, micro and macro electrochemical impedance spectroscopy of copper at various NaCl concentrations and pH values demonstrates a different behavior of copper after several potentiodynamic polarization cycles. View Full-Text
Keywords: copper; polarization; EIS; pitting corrosion; experimental design copper; polarization; EIS; pitting corrosion; experimental design
Show Figures

Graphical abstract

MDPI and ACS Style

Arjmand, F.; Adriaens, A. Influence of pH and Chloride Concentration on the Corrosion Behavior of Unalloyed Copper in NaCl Solution: A Comparative Study Between the Micro and Macro Scales. Materials 2012, 5, 2439-2464.

Show more citation formats Show less citations formats

Article Access Map by Country/Region

1
Only visits after 24 November 2015 are recorded.
Back to TopTop