Next Article in Journal
Teriparatide Therapy as an Adjuvant for Tissue Engineering and Integration of Biomaterials
Next Article in Special Issue
Delocalization of Electrons in Strong Insulators at High Dynamic Pressures
Previous Article in Journal
Correlation of Nitrogen Sorption and Confocal Laser Scanning Microscopy for the Analysis of Amino Group Distributions on Mesoporous Silica
Previous Article in Special Issue
Nanohardness and Residual Stress in TiN Coatings
Article Menu

Export Article

Open AccessReview
Materials 2011, 4(6), 1104-1116;

The Role Played by Computation in Understanding Hard Materials

DST/NRF Centre of Excellence in Strong Materials and School of Physics, University of the Witwatersrand, Johannesburg 2094, South Africa
Received: 11 May 2011 / Revised: 2 June 2011 / Accepted: 8 June 2011 / Published: 14 June 2011
(This article belongs to the Special Issue Hard Materials: Advances in Synthesis and Understanding)
Full-Text   |   PDF [517 KB, uploaded 16 June 2011]   |  


In the last decade, computation has played a valuable role in the understanding of materials. Hard materials, in particular, are only part of the application. Although materials involving B, C, N or O remain the most valued atomic component of hard materials, with diamond retaining its distinct superiority as the hardest, other materials involving a wide variety of metals are proving important. In the present work the importance of both ab-initio approaches and molecular dynamics aspects will be discussed with application to quite different systems. On one hand, ab-initio methods are applied to lightweight systems and advanced nitrides. Following, the use of molecular dynamics will be considered with application to strong metals that are used for high temperature applications. View Full-Text
Keywords: boride; nitride; ab-initio; crystal structure; elastic constants boride; nitride; ab-initio; crystal structure; elastic constants

Figure 1

This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Share & Cite This Article

MDPI and ACS Style

Lowther, J.E. The Role Played by Computation in Understanding Hard Materials. Materials 2011, 4, 1104-1116.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top