Nanoporous Carbide-Derived Carbon Material-Based Linear Actuators
Abstract
:1. Introduction
2. Preparation of Actuators
2.1. Synthesis of Carbide-Derived Carbon
2.2. Preparation of the Electrodes
2.3. Assembling of the Actuators
Actuator # | Notation of actuator | Notation of CDC material | Electrolyte |
---|---|---|---|
1 | TEA600 | TiC-600 | 1.0 M TEABF4/PC |
2 | TEA800 | TiC-800 | 1.0 M TEABF4/PC |
3 | EMI600 | TiC-600 | EMITf |
4 | EMI800 | TiC-800 | EMITf |
2.4. Evaluation of Carbon Materials
Notation of CDC material | TChlorine [°C] | SA [m2 g-1] | Vp [cm3 g-1] | Vμ [cm3 g-1] | APS [Å] |
---|---|---|---|---|---|
TiC-600 | 600 | 1150 | 0.53 | 0.49 | 9.3 |
TiC-800 | 800 | 1470 | 0.71 | 0.59 | 9.7 |
3. Electrochemical Properties
3.1. Experimental Setup
3.2. Electrochemical Measurement Results
Notation of actuator | Cs [F g-1] | Rs [Ω cm2] | Θ [ °] |
---|---|---|---|
TEA600 | 64 | 3.9 | -71 |
TEA800 | 112 | 3.6 | -72 |
EMI600 | 75 | 7.3 | -55 |
EMI800 | 121 | 4.6 | -71 |
4. Electromechanical Characterization
4.1. Electromechanical Measurement Modes
- the constant current charge-discharge process (CC mode);
- the current of the actuator is limited and the relatively short period of constant current is followed by a prolonged period of constant potential (CCCP mode).
4.2. Experimental Setup
4.3. CC Mode Experiments
IC | 70 mA | 300 mA | ||||||
---|---|---|---|---|---|---|---|---|
Ein (J) | Eout (J) | Eloss (J) | actuation (μm) | Ein (J) | Eout (J) | Eloss (J) | actuation (μm) | |
TEA600 | 15 | 11.9 | 3.1 | 4.0 | 12.2 | 6.6 | 5.6 | 2.4 |
TEA800 | 25 | 16 | 9 | 8.0 | 18.9 | 11.3 | 7.6 | 5.0 |
EMI600 | 18.9 | 11.5 | 7.4 | 7.2 | 8.3 | 2.8 | 5.5 | 1.5 |
EMI800 | 25 | 19.8 | 5.2 | 6.0 | 20 | 10.8 | 9.2 | 3.0 |
4.4. Estimation of Actuator Efficiency
IC | 70 mA | 300 mA | ||
---|---|---|---|---|
Efficiency by Ein (%) | Differential efficiency by Eloss (%) | Efficiency by Ein (%) | Differential efficiency by Eloss (%) | |
TEA600 | 0.0029 | 0.014 | 0.0022 | 0.0047 |
TEA800 | 0.0035 | 0.01 | 0.0029 | 0.0072 |
EMI600 | 0.0042 | 0.011 | 0.002 | 0.0047 |
EMI800 | 0.0026 | 0.013 | 0.0017 | 0.0036 |
4.5. CCCP Mode Experiments
5. Conclusions
Acknowledgements
References and Notes
- Shahinpoor, M.; Kim, K.J. Novel ionic polymer-metal composites equipped with physically loaded particulate electrodes as biomimetic sensors, actuators and artificial muscles. Sensor. Actuator. A–Phys. 2002, 96, 125–132. [Google Scholar] [CrossRef]
- Robinson, J.W. Charge Control of Ionic Polymers; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 2005. [Google Scholar]
- Punning, A.; Kruusmaa, M.; Aabloo, A. Surface resistance experiments with IPMC sensors and actuators. Sensor. Actuator. A– Phys. 2007, 133, 200–209. [Google Scholar] [CrossRef]
- Wilson, S.A.; Jourdain, R.-P.J.; Zhang, Q.; Dorey, R.A.; Bowen, C.R.; Willander, M.; Wahab, Q.U.; Willander, M.; Al-hilli, S.; Nur, O.; Quandt, E.; Johansson, C.; Pagounis, E.; Kohl, M.; Matovic, J.; Samel, B.; van der Wijngaart, W.; Jager, E.W.H.; Carlsson, D.; Djinovic, Z.; Wegener, M.; Moldovan, C.; Iosub, R.; Abad, E.; Wendlandt, M.; Rusu, C.; Persson, C. New materials for micro-scale sensors and actuators: An engineering review. Mater. Sci. Eng. Rep. 2007, 56, 1–129. [Google Scholar] [CrossRef]
- Bar-Cohen, Y. Electroactive Polymer (EAP) Actuators as Artificial Muscles-Reality, Potential and Challenge, 2nd ed.; SPIE Press: San Diego, CA, USA, 2004. [Google Scholar]
- Baughman, R.H.; Cui, C.; Zakhidov, A.A.; Iqbal, Z.; Barisci, J.N.; Spinks, G.M.; Wallace, G.G.; Mazzoldi, A.; DeRossi, D.; Rinzler, A.; Jaschinski, G.O.; Roth, S.; Kertesz, M. Carbon nanotube actuators. Science 1999, 284, 1340–1344. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.A.; Contescu, C.I.; Putyera, K. Dekker Encyclopedia of Nanoscience and Nanotechnology; Taylor & Francis Group: New York, NY, USA, 2004; Volume 1, pp. 475–519. [Google Scholar]
- Mukai, K.; Asaka, K.; Sugino, T.; Kiyohara, K.; Takeuchi, I.; Terasawa, N.; Futaba, D.N.; Hata, K.; Fukushima, T.; Aida, T. Highly conductive sheets from millimeter-long single-walled carbon nanotubes and ionic liquids: application to fast-moving, low-voltage electromechanical actuators operable in air. Adv. Mater. 2009, 21, 1582–1585. [Google Scholar] [CrossRef]
- Takaeuchi, I.; Asaka, K.; Kiyohara, K.; Sugino, T.; Terasawa, N.; Mukai, K.; Fukushima, T.; Aida, T. Electromechanical behavior of fully plastic actuators based on bucky gel containing various internal liquids. Elecrochim. Acta 2009, 54, 1762–1768. [Google Scholar] [CrossRef]
- Guangli, C.; Miller, S.A.; Fisher, E.R.; Martin, C.R. An electrochemically driven actuator based on a nanostructured carbon. Material. Anal. Chem. 1999, 71, 3187–3191. [Google Scholar] [CrossRef]
- Akle, B.J.; Leo, D.J. Single-walled carbon nanotubes—Ionic polymer electroactive hybrid transducers. J. Intel. Mat. Syst. Struct. 2008, 19, 905–915. [Google Scholar] [CrossRef]
- Baughman, R.H. Conducting polymer artificial muscles. Synth. Met. 1996, 78, 339–353. [Google Scholar] [CrossRef]
- Mazzoldi, D.D.; Baughman, R.H. Electro-mechanical behavior of carbon nanotube sheets in electrochemical actuators. In Proceedings of 7th SPIE International Symposium on Smart Structures and Materials, Newport Beach, California, USA, 6–8 March 2000; In Electroactive Polymer Actuators and Devices. SPIE Press: San Diego, CA, USA, 2000; pp. 25–32. [Google Scholar]
- Roth, S.; Baughman, R.H. Actuators of individual carbon nanotubes. Curr. Appl. Phys. 2002, 2, 311–314. [Google Scholar] [CrossRef]
- Mukai, K.; Asaka, K.; Kiyohara, K.; Sugino, T.; Takeuchi, I.; Fukushima, T.; Aida, T. High performance fully plastic actuator based on ionic-liquid-based bucky gel. Electrochim. Acta 2008, 53, 5555–5562. [Google Scholar] [CrossRef]
- Campana, F.P.; Hahn, M.; Foelske, A.; Ruch, P.; Kötz, R.; Siegenthaler, H. Intercalation into and film formation on pyrolytic graphite in a supercapacitor-type electrolyte (C2H5)4NBF4 /propylene carbonate. Electrochem. Comm. 2006, 8, 1363–1368. [Google Scholar] [CrossRef]
- Hahn, M.; Barbieri, O.; Gallay, R.; Kötz, R. A dilatometric study of the voltage limitation of carbonaceous electrodes in aprotic EDLC type electrolytes by charge-induced strain. Carbon 2006, 44, 2523–2533. [Google Scholar] [CrossRef]
- Hahn, M.; Barbieri, O.; Campana, F.P.; Kötz, R.; Gallay, R. Carbon based double layer capacitors with aprotic electrolyte solutions: The possible role of intercalation/insertion processes. Appl. Phys. A 2006, 82, 633–638. [Google Scholar] [CrossRef]
- Ruch, P.; Hahn, M.; Rosciano, F.; Holzapfel, M.; Kaiser, H.; Scheifele, W.; Schmitt, B.; Novák, P.; Kötz, R.; Wokaun, A. In situ X-ray diffraction of the intercalation of (C2H5)4N+ and BF4− into graphite from acetonitrile and propylene carbonate based supercapacitor electrolytes. Electrochim. Acta 2007, 53, 1074–1082. [Google Scholar] [CrossRef]
- Smart, L.E.; Moore, A.E. Solid State Chemistry: An Introduction; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Hahn, M.; Barbieri, O.; Campana, M.; Gallay, R.; Kötz, R. Charge-induced dimensional changes in electrochemical double layer capacitors. In Proceedings of 14th International Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, Deerfield Beach, FL, USA, 6–8 December 2004.
- Harris, P.H. Carbon Nanotubes and Related Structures; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Dash, R.; Chmiola, J.; Yushin, G.; Gogotsi, Y.; Laudisio, J.; Singer, J.; Fischer, J.; Kucheyev, S. Titanium carbide derived nanoporous carbon for energy-related applications. Carbon 2006, 44, 2489–2497. [Google Scholar] [CrossRef]
- Lätt, M.; Leis, J.; Arulepp, M.; Kuura, H.; Lust, E. Latest developments in carbide derived carbon for energy storage applications. In The 16th International Seminar on Double Layer Capacitors & Hybrid Energy Storage Devices, Deerfield Beach, FL, USA, 4–6 December 2006.
- Arulepp, M.; Leis, J.; Lätt, M.; Miller, F.; Rumma, K.; Lust, E.; Burke, A.F. The advanced carbide-derived carbon based supercapacitor. J. Power Sources 2006, 162, 1460–1466. [Google Scholar] [CrossRef]
- Becker, H.I. Low Voltage Electrolytic Capacitor. US Pat. 2,800,616, 1954. [Google Scholar]
- Hahn, M.; Kötz, R.; Gallay, R.; Siggel, A. Pressure evolution in propylene carbonate based electrochemical double layer capacitors. Electrochim. Acta 2006, 52, 1709–1712. [Google Scholar] [CrossRef]
- Kötz, R.; Hahn, M.; Ruch, P.; Gallay, R. Comparision of presseure evolution in supercapacitor devices using different aprotic solvents. Electrochem. Comm. 2008, 10, 359–362. [Google Scholar] [CrossRef]
- Kötz, R.; Hahn, M; Barbieri, O.; Campana, F.; Foelske, A.; Würsig, A.; Novak, P.; Gallay, R. Pseudo capacitive processes and lifetime aspects of electrochemical double-layer capacitors. In The 15th International Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, Deerfield Beach, FL, USA, 5–7 December 2005.
- Chimola, J.; Largeot, C.; Taberna, P.L.; Simon, P.; Gogotsi, Y. Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. Angew. Chem. Int. Ed. 2008, 47, 3392–3395. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Kiyohara, K.; Sugino, T.; Takeuchi, I.; Mukai, K.; Asaka, K. Expansion and contraction of polymer electrodes under applied voltage. J. Appl. Phys. 2009, 105, 063506. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Torop, J.; Arulepp, M.; Leis, J.; Punning, A.; Johanson, U.; Palmre, V.; Aabloo, A. Nanoporous Carbide-Derived Carbon Material-Based Linear Actuators. Materials 2010, 3, 9-25. https://doi.org/10.3390/ma3010009
Torop J, Arulepp M, Leis J, Punning A, Johanson U, Palmre V, Aabloo A. Nanoporous Carbide-Derived Carbon Material-Based Linear Actuators. Materials. 2010; 3(1):9-25. https://doi.org/10.3390/ma3010009
Chicago/Turabian StyleTorop, Janno, Mati Arulepp, Jaan Leis, Andres Punning, Urmas Johanson, Viljar Palmre, and Alvo Aabloo. 2010. "Nanoporous Carbide-Derived Carbon Material-Based Linear Actuators" Materials 3, no. 1: 9-25. https://doi.org/10.3390/ma3010009
APA StyleTorop, J., Arulepp, M., Leis, J., Punning, A., Johanson, U., Palmre, V., & Aabloo, A. (2010). Nanoporous Carbide-Derived Carbon Material-Based Linear Actuators. Materials, 3(1), 9-25. https://doi.org/10.3390/ma3010009