Biodegradable Polymers in Bone Tissue Engineering
Abstract
:1. Introduction
2. Resorbable Polymer Properties and Nomenclature
2.1. Molecular weight (Mn) and intrinsic viscosity
2.2. Crystallinity
2.3. Thermal application range
2.4. Co-polymers
2.5. Degradation
3. Biocompatibility
3.1. Foreign body reaction and fibrous tissue formation
3.2. Surface characteristics and sterilization
4. Biofunctionality
5. Emerging Technologies
6. Conclusions
References and Notes
- de Boer, H.H. The history of bone grafts. Clin. Orthop. Relat. Res. 1988, 226, 292–298. [Google Scholar] [PubMed]
- Giannoudis, P.V.; Dinopoulos, H.; Tsiridis, E. Bone substitutes: An update. Injury 2005, 36 (Suppl 3), S20–S27. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.H.; Samartzis, D.; An, H.S. Cell technologies for spinal fusion. Spine J 2005, 5 (Supp l), 231S–239S. [Google Scholar] [CrossRef] [PubMed]
- Arrington, E.D.; Smith, W.J.; Chambers, H.G.; Bucknell, A.L.; Davino, N.A. Complications of iliac crest bone graft harvesting. Clin. Orthop. Rel. Res. 1996, 329, 300–309. [Google Scholar] [CrossRef]
- Banwart, J.C.; Asher, M.A.; Hassanein, R.S. Iliac crest bone-graft harvest donor site morbidity - a statistical evaluation. Spine 1995, 20, 1055–1060. [Google Scholar] [CrossRef] [PubMed]
- Morgan, S.J.; Jeray, K.J.; Saliman, L.H.; Miller, H.J.; Williams, A.E.; Tanner, S.L.; Smith, W.R.; Broderick, J.S. Continuous infusion of local anesthetic at iliac crest bone-graft sites for postoperative pain relief. A randomized, double-blind study. J. Bone Joint Surg. Am. 2006, 88, 2606–2612. [Google Scholar] [CrossRef]
- Ross, N.; Tacconi, L.; Miles, J.B. Heterotopic bone formation causing recurrent donor site pain following iliac crest bone harvesting. Br. J. Neurosurg. 2000, 14, 476–479. [Google Scholar] [CrossRef] [PubMed]
- Seiler, J.G., III; Johnson, J. Iliac crest autogenous bone grafting: Donor site complications. J. South Orthop. Assoc. 2000, 9, 91–97. [Google Scholar]
- Skaggs, D.L.; Samuelson, M.A.; Hale, J.M.; Kay, R.M.; Tolo, V.T. Complications of posterior iliac crest bone grafting in spine surgery in children. Spine 2000, 25, 2400–2402. [Google Scholar] [CrossRef] [PubMed]
- Summers, B.N.; Eisenstein, S.M. Donor Site Pain from the Ilium - A Complication of Lumbar Spine Fusion. J. Bone Joint Surg. Br. 1989, 71, 677–680. [Google Scholar] [PubMed]
- Younger, E.M.; Chapman, M.W. Morbidity at bone graft donor sites. J. Orthop. Trauma 1989, 3, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Laurencin, C.; Khan, Y.; El-Amin, S.F. Bone graft substitutes. Expert Rev. Med. Devices 2006, 3, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Sugihara, S.; van Ginkel, A.D.; Jiya, T.U.; Van Royen, B.J.; van Diest, P.J.; Wuisman, P.I.J.M. Histopathology of retrieved allografts of the femoral head. J. Bone Joint Surg. Br. 1999, 81B, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Burg, K.J.L.; Porter, S.; Kellam, J.F. Biomaterial developments for bone tissue engineering. Biomaterials 2000, 21, 2347–2359. [Google Scholar] [CrossRef] [PubMed]
- Crane, G.M.; Ishaug, S.L.; Mikos, A.G. Bone Tissue Engineering. Nat. Med. 1995, 1, 1322–1324. [Google Scholar] [CrossRef] [PubMed]
- Freed, L.E.; Vunjak-Novakovic, G.; Biron, R.J.; Eagles, D.B.; Lesnoy, D.C.; Barlow, S.K.; Langer, R. Biodegradable polymer scaffolds for tissue engineering. Biotechnology 1994, 12, 689–693. [Google Scholar] [CrossRef]
- Griffith, L.G.; Naughton, G. Tissue engineering - Current challenges and expanding opportunities. Science 2002, 295, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Hubbell, J.A. Biomaterials in Tissue Engineering. Biotechnology 1995, 13, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Sakiyama-Elbert, S.E.; Hubbell, J.A. Functional biomaterials: Design of novel biomaterials. Ann. Rev. Mat. Res. 2001, 31, 183–201. [Google Scholar] [CrossRef]
- Helder, M.N.; Knippenberg, M.; Klein-Nulend, J.; Wuisman, P.I. Stem cells from adipose tissue allow challenging new concepts for regenerative medicine. Tissue Eng. 2007, 13, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Middleton, J.C.; Tipton, A.J. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000, 21, 2335–2346. [Google Scholar] [CrossRef] [PubMed]
- Wuisman, P.I.; Smit, T.H. Bioresorbable polymers: heading for a new generation of spinal cages. Eur. Spine J. 2006, 15, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Vroman, I.; Tighzert, L. Biodegradable polymers. Materials 2009, 2, 307–344. [Google Scholar] [CrossRef]
- Nair, L.S.; Laurencin, C.T. Polymers as biomaterials for tissue engineering and controlled drug delivery. Adv. Biochem. Eng. Biotechnol. 2006, 102, 47–90. [Google Scholar] [PubMed]
- Holland, T.A.; Mikos, A.G. Biodegradable polymeric scaffolds. Improvements in bone tissue engineering through controlled drug delivery. Adv. Biochem. Eng. Biotechnol. 2006, 102, 161–185. [Google Scholar] [PubMed]
- Rezwan, K.; Chen, Q.Z.; Blaker, J.J.; Boccaccini, A.R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006, 27, 3413–3431. [Google Scholar] [CrossRef] [PubMed]
- Vert, M. Poly(lactic acid)s. In Encyclopedia of Biomaterials and Biomedical Engineering; Marcel Dekker Inc.: New York, NY, USA, 2004; pp. 1254–1263. [Google Scholar]
- Gunatillake, P.; Mayadunne, R.; Adhikari, R. Recent developments in biodegradable synthetic polymers. Biotechnol. Annu. Rev. 2006, 12, 301–347. [Google Scholar] [PubMed]
- Gunatillake, P.A.; Adhikari, R. Biodegradable synthetic polymers for tissue engineering. Eur. Cell Mater. 2003, 5, 1–16. [Google Scholar] [PubMed]
- Vert, M. Degradable and bioresorbable polymers in surgery and in pharmacology: Beliefs and facts. J. Mater. Sci. Mater. Med. 2009, 20, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Ge, Z.; Jin, Z.; Cao, T. Manufacture of degradable polymeric scaffolds for bone regeneration. Biomed. Mater. 2008, 3, 022001:1–022001:11. [Google Scholar] [CrossRef]
- Pietrzak, W.S. Bioabsorbable polymer applications in musculoskeletal fixation and healing. In Musculoskeletal Tissue Regeneration, Biological Materials and Methods; Humana Press: Totowa, NJ, USA, 2008; pp. 509–529. [Google Scholar]
- Young, R.J.; Lovell, P.A. Introduction to Polymers; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Wright, D.D. Degradable Polymer Composites. In Encyclopedia of Biomaterials and Biomedical Engineering; Marcel Dekker Inc.: New York, NY, USA, 2004; pp. 423–432. [Google Scholar]
- Wnek, G.E. Polymers. In Encyclopedia of Biomaterials and Biomedical Engineering; Marcel Dekker Inc.: New York, NY, USA, 2004; pp. 1279–1285. [Google Scholar]
- Tamada, J.A.; Langer, R. Erosion kinetics of hydrolytically degradable polymers. Proc. Natl. Acad. Sci. USA 1993, 90, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Von Burkersroda, F.; Schedl, L.; Gopferich, A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 2002, 23, 4221–4231. [Google Scholar] [CrossRef] [PubMed]
- Gopferich, A. Mechanisms of polymer degradation and erosion. Biomaterials 1996, 17, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Eglin, D.; Alini, M. Degradable polymeric materials for osteosynthesis: Tutorial. Eur. Cell Mater. 2008, 16, 80–91. [Google Scholar] [PubMed]
- Williams, D.F. On the mechanisms of biocompatibility. Biomaterials 2008, 29, 2941–2953. [Google Scholar] [CrossRef] [PubMed]
- Neuss, S.; Apel, C.; Buttler, P.; Denecke, B.; Dhanasingh, A.; Ding, X.; Grafahrend, D.; Groger, A.; Hemmrich, K.; Herr, A.; Jahnen-Dechent, W.; Mastitskaya, S.; Perez-Bouza, A.; Rosewick, S.; Salber, J.; Wöltje, M.; Zenke, M. Assessment of stem cell/biomaterial combinations for stem cell-based tissue engineering. Biomaterials 2008, 29, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Stevens, M.M.; George, J.H. Exploring and engineering the cell surface interface. Science 2005, 310, 1135–1138. [Google Scholar] [CrossRef] [PubMed]
- Elbert, D.L.; Hubbell, J.A. Surface treatments of polymers for biocompatibility. Ann. Rev. Mat. Res. 1996, 26, 365–394. [Google Scholar] [CrossRef]
- Olivieri, M.P.; Rittle, K.H.; Tweden, K.S.; Loomis, R.E. Comparative biophysical study of adsorbed calf serum, fetal bovine serum and mussel adhesive protein films. Biomaterials 1992, 13, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Park, S.J.; Lee, W.K.; Ko, J.S.; Kim, H.M. MG63 osteoblastic cell adhesion to the hydrophobic surface precoated with recombinant osteopontin fragments. Biomaterials 2003, 24, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Boyan, B.D.; Hummert, T.W.; Dean, D.D.; Schwartz, Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 1996, 17, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.J.; Clegg, R.E.; Leavesley, D.I.; Pearcy, M.J. Mediation of biomaterial-cell interactions by adsorbed proteins: A review. Tissue Eng. 2005, 11, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.M. Adhesive recognition sequences. J. Biol. Chem. 1991, 266, 12809–12812. [Google Scholar] [PubMed]
- Williams, D.F. The Williams Dictionary of Biomaterials; Liverpool University Press: Liverpool, UK, 1999. [Google Scholar]
- Hunt, J.A. Foreign Body response. In Encyclopedia of Biomaterials and Biomedical Engineering; Marcel Dekker Inc.: New York, NY, USA, 2004; pp. 641–648. [Google Scholar]
- Anderson, J.M.; Rodriguez, A.; Chang, D.T. Foreign body reaction to biomaterials. Semin. Immunol. 2008, 20, 86–100. [Google Scholar] [CrossRef] [PubMed]
- Luttikhuizen, D.T.; Harmsen, M.C.; van Luyn, M.J.A. Cellular and molecular dynamics in the foreign body reaction. Tissue Eng. 2006, 12, 1955–1970. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Hu, W. Molecular determinants of biocompatibility. Expert Rev. Med. Devices 2005, 2, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Brodbeck, W.G.; Shive, M.S.; Colton, E.; Nakayama, Y.; Matsuda, T.; Anderson, J.M. Influence of biomaterial surface chemistry on the apoptosis of adherent cells. J. Biomed. Mater. Res. 2001, 55, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Brodbeck, W.G.; Patel, J.; Voskerician, G.; Christenson, E.; Shive, M.S.; Nakayama, Y.; Matsuda, T.; Ziats, N.P.; Anderson, J.M. Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic substrates in vivo. Proc. Natl. Acad. Sci. USA 2002, 99, 10287–10292. [Google Scholar]
- Lendlein, A.; Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 2002, 296, 1673–1676. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, H.; Mizuno, A.; Ikada, Y. Enhanced crystallization of poly(l-lactide-co-caprolactone) during storage at room temperature. J. Appl. Polym. Sci. 1998, 76, 947–953. [Google Scholar] [CrossRef]
- Choueka, J.; Charvet, J.L.; Koval, K.J.; Alexander, H.; James, K.S.; Hooper, K.A.; Kohn, J. Canine bone response to tyrosine-derived polycarbonates and poly(l-lactic acid). J. Biomed. Mater. Res. 1996, 31, 35–41. [Google Scholar] [PubMed]
- Hooper, K.A.; Macon, N.D.; Kohn, J. Comparative histological evaluation of new tyrosine-derived polymers and poly (l-lactic acid) as a function of polymer degradation. J. Biomed. Mater. Res. 1998, 41, 443–454. [Google Scholar] [CrossRef] [PubMed]
- James, K.; Levene, H.; Parsons, J.R.; Kohn, J. Small changes in polymer chemistry have a large effect on the bone-implant interface: evaluation of a series of degradable tyrosine-derived polycarbonates in bone defects. Biomaterials 1999, 20, 2203–2212. [Google Scholar] [CrossRef] [PubMed]
- Togawa, D.; Bauer, T.W.; Brantigan, J.W.; Lowery, G.L. Bone graft incorporation in radiographically successful human intervertebral body fusion cages. Spine 2001, 26, 2744–2750. [Google Scholar] [CrossRef] [PubMed]
- Togawa, D.; Bauer, T.W.; Lieberman, I.H.; Sakai, H. Lumbar intervertebral body fusion cages: Histological evaluation of clinically failed cages retrieved from humans. J. Bone Joint Surg. Am. 2004, 86A, 70–79. [Google Scholar] [PubMed]
- Pietrzak, W.S.; Sarver, D.R.; Verstynen, M.L. Bioabsorbable polymer science for the practicing surgeon. J. Craniofac. Surg. 1997, 8, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Mwale, F.; Wang, H.T.; Nelea, V.; Luo, L.; Antoniou, J.; Wertheimer, M.R. The effect of glow discharge plasma surface modification of polymers on the osteogenic differentiation of committed human mesenchymal stem cells. Biomaterials 2006, 27, 2258–2264. [Google Scholar] [CrossRef] [PubMed]
- van Kooten, T.G.; Spijker, H.T.; Busscher, H.J. Plasma-treated polystyrene surfaces: Model surfaces for studying cell-biomaterial interactions. Biomaterials 2004, 25, 1735–1747. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.B.; Roach, H.I.; Clarke, N.M.; Howdle, S.M.; Quirk, R.; Shakesheff, K.M.; Oreffo, R.O. Human osteoprogenitor growth and differentiation on synthetic biodegradable structures after surface modification. Bone 2001, 29, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Anselme, K. Osteoblast adhesion on biomaterials. Biomaterials 2000, 21, 667–681. [Google Scholar] [CrossRef] [PubMed]
- Boyan, B.D.; Sylvia, V.L.; Liu, Y.; Sagun, R.; Cochran, D.L.; Lohmann, C.H.; Dean, D.D.; Schwarz, Z. Surface roughness mediates its effects on osteoblasts via protein kinase A and phospholipase A2. Biomaterials 1999, 20, 2305–2310. [Google Scholar] [CrossRef] [PubMed]
- Boyan, B.D.; Lohmann, C.H.; Dean, D.D.; Sylvia, V.L.; Cochran, D.L.; Schwartz, Z. Mechanisms involved in osteoblast response to implant surface morphology. Ann. Rev. Mat. Res. 2001, 31, 357–371. [Google Scholar] [CrossRef]
- Shalabi, M.M.; Gortemaker, A.; Van't Hof, M.A.; Jansen, J.A.; Creugers, N.H.J. Implant surface roughness and bone healing: A systematic review. J. Dent. Res. 2006, 85, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Deligianni, D.D.; Katsala, N.; Ladas, S.; Sotiropoulou, D.; Amedee, J.; Missirlis, Y.F. Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials 2001, 22, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Kunzler, T.P.; Drobek, T.; Schuler, M.; Spencer, N.D. Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomaterials 2007, 28, 2175–2182. [Google Scholar] [CrossRef] [PubMed]
- Thapa, A.; Miller, D.C.; Webster, T.J.; Haberstroh, K.M. Nano-structured polymers enhance bladder smooth muscle cell function. Biomaterials 2003, 24, 2915–2926. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Shin, Y.N.; Cho, M.H.; Kim, S.H.; Kim, S.K.; Cho, Y.H.; Khang, G.; Lee, I.W.; Lee, H.B. Adhesion behavior of human bone marrow stromal cells on differentially wettable polymer surfaces. Tissue Eng. 2007, 13, 2095–2103. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, M.; Teraoka, F.; Fujimoto, S.; Hamada, Y.; Kibayashi, H.; Takahashi, J. Improvement of cell adhesion on poly(l-lactide) by atmospheric plasma treatment. J. Biomed. Mater. Res. A 2006, 77, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Cai, K.; Yao, K.; Lin, S.; Yang, Z.; Li, X.; Xie, H.; Qing, T.; Gao, L. Poly(d,l-lactic acid) surfaces modified by silk fibroin: effects on the culture of osteoblast in vitro. Biomaterials 2002, 23, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.Y.; Shaughnessy, M.C.; Zhou, Z.; Noh, H.; Vogler, E.A.; Donahue, H.J. Surface energy effects on osteoblast spatial growth and mineralization. Biomaterials 2008, 29, 1776–1784. [Google Scholar] [CrossRef] [PubMed]
- Curran, J.M.; Tang, Z.; Hunt, J.A. PLGA doping of PCL affects the plastic potential of human mesenchymal stem cells, both in the presence and absence of biological stimuli. J. Biomed. Mater. Res. A 2009, 89A, 1–12. [Google Scholar]
- Jansen, E.J.; Sladek, R.E.; Bahar, H.; Yaffe, A.; Gijbels, M.J.; Kuijer, R.; Bulstra, S.K.; Guldemond, N.A.; Binderman, I.; Koole, L.H. Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering. Biomaterials 2005, 26, 4423–4431. [Google Scholar] [CrossRef] [PubMed]
- Kroeze, R.J.; Helder, M.N.; Roos, W.H.; Wuijte, G.J.; Bank, R.A.; Smit, T.H. Sterilization of poly(l-lactide-co-caprolactone) and the corresponding cellular response of adipose stem cells BioStar 2008–Science in Exchange Meeting Abstracts. Tissue Eng. Part A 2009, 15, 675–737. [Google Scholar] [CrossRef]
- Nuutinen, J.P.; Clerc, C.; Virta, T.; Tormala, P. Effect of gamma, ethylene oxide, electron beam, and plasma sterilization on the behaviour of SR-PLLA fibres in vitro. J. Biomater. Sci. Polym. Ed. 2002, 13, 1325–1336. [Google Scholar] [CrossRef] [PubMed]
- Smit, T.H.; Thomas, K.A.; Hoogendoorn, R.J.; Strijkers, G.J.; Helder, M.N.; Wuisman, P.I. Sterilization and strength of 70/30 polylactide cages: e-Beam versus ethylene oxide. Spine 2007, 32, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Athanasiou, K.A.; Niederauer, G.G.; Agrawal, C.M. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 1996, 17, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Mendes, G.C.; Brandao, T.R.; Silva, C.L. Ethylene oxide sterilization of medical devices: A review. Am. J. Infect. Control 2007, 35, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Marois, Y.; Zhang, Z.; Vert, M.; Deng, X.; Lenz, R.; Guidoin, R. Effect of sterilization on the physical and structural characteristics of polyhydroxyoctanoate (PHO). J. Biomater. Sci. Polym. Ed. 1999, 10, 469–482. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wan, Y.; Tu, C.; Cai, Q.; Bei, J.; Wang, S. Enhancing the cell affinity of macroporous poly(l-lactide) cell scaffold by a convenient surface modification method. Polym. Int. 2003, 52, 1892–1899. [Google Scholar] [CrossRef]
- Gao, J.; Niklason, L.; Langer, R. Surface hydrolysis of poly(glycolic acid) meshes increases the seeding density of vascular smooth muscle cells. J. Biomed. Mater. Res. 1998, 42, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Nishi, Y.; Izumi, H.; Kawano, J.; Oguri, K.; Kawaguchi, Y.; Ogata, M.; Tonegawa, A.; Takayama, K.; Kawai, T.; Ochi, M. Effect of electron-beam irradiation on water wettability of hydroxy apatites for artificial bone. J. Mater. Sci. 1997, 32, 3637–3639. [Google Scholar] [CrossRef]
- Zenkiewicz, M.; Rauchfleisz, M.; Czuprynska, J.; Polanski, J.; Karasiewicz, T.; Engelgard, W. Effects of electron-beam irradiation on surface oxidation of polymer composites. Appl. Surface Sci. 2007, 253, 8992–8999. [Google Scholar] [CrossRef]
- Bergsma, E.J.; Rozema, F.R.; Bos, R.R.M.; Debruijn, W.C. Foreign-body reactions to resorbable poly(l-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures. J. Oral Maxillofac. Surg. 1993, 51, 666–670. [Google Scholar] [CrossRef] [PubMed]
- Bergsma, J.E.; Debruijn, W.C.; Rozema, F.R.; Bos, R.R.M.; Boering, G. Late degradation tissue-response to poly(l-lactide) bone plates and screws. Biomaterials 1995, 16, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Bostman, O.M.; Pihlajamaki, H.K. Late foreign-body reaction to an intraosseous bioabsorbable polylactic acid screw - A case report. J. Bone Joint Surg. Am. 1998, 80A, 1791–1794. [Google Scholar] [CrossRef] [PubMed]
- Bostman, O.M. Osteoarthritis of the ankle after foreign-body reaction to absorbable pins and screws - A three- to nine-year follow-up study. J. Bone Joint Surg. Br. 1998, 80B, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Bostman, O.M.; Pihlajamaki, H.K. Adverse tissue reactions to bioabsorbable fixation devices. Clin. Orthop. Rel. Res. 2000, 371, 216–227. [Google Scholar] [CrossRef]
- Busam, M.L.; Esther, R.J.; Obremskey, W.T. Hardware removal: Indications and expectations. J. Am. Acad. Orthop. Surg. 2006, 14, 113–120. [Google Scholar] [PubMed]
- Larsen, M.W.; Pietrzak, W.S.; Delee, J.C. Fixation of osteochondritis dissecans lesions using poly(l-lactic acid)/poly(glycolic acid) copolymer bioabsorbable screws. Am. J. Sports Med. 2005, 33, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak, W.S. Principles of development and use of absorbable internal fixation. Tissue Eng. 2000, 6, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Rokkanen, P.U.; Bostman, O.; Hirvensalo, E.; Makela, E.A.; Partio, E.K.; Patiala, H.; Vainionpää, S.I.; Vihtonen, K.; Törmälä, P. Bioabsorbable fixation in orthopaedic surgery and traumatology. Biomaterials 2000, 21, 2607–2613. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, M.; Smit, T.H.; Burger, E.H.; Wuisman, P.I. Bioabsorbable poly-l-lactic acid cages for lumbar interbody fusion: Three-year follow-up radiographic, histologic, and histomorphometric analysis in goats. Spine 2002, 27, 2706–2714. [Google Scholar] [CrossRef] [PubMed]
- Ashammakhi, N.; Suuronen, R.; Tiainen, J.; Tormala, P.; Waris, T. Spotlight on naturally absorbable osteofixation devices. J. Craniofac. Surg. 2003, 14, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Ertel, S.I.; Kohn, J.; Zimmerman, M.C.; Parsons, J.R. Evaluation of poly(DTH carbonate), a tyrosine-derived degradable polymer, for orthopedic applications. J. Biomed. Mater. Res. 1995, 29, 1337–1348. [Google Scholar] [CrossRef] [PubMed]
- Ashammakhi, N.; Renier, D.; Arnaud, E.; Marchac, D.; Ninkovic, M.; Donaway, D.; Jones, B.; Serlo, W.; Laurikainen, K.; Törmälä, P.; Waris, T. Successful use of biosorb osteofixation devices in 165 cranial and maxillofacial cases: a multicenter report. J. Craniofac. Surg. 2004, 15, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Taneichi, H.; Suda, K.; Kajino, T.; Matsumura, A.; Moridaira, H.; Kaneda, K. Unilateral transforaminal lumbar interbody fusion and bilateral anterior-column fixation with two Brantigan I/F cages per level: Clinical outcomes during a minimum 2-year follow-up period. J. Neurosurg. Spine 2006, 4, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Ohlin, A.; Karlsson, M.; Duppe, H.; Hasserius, R.; RedlundJohnell, I. Complications after transpedicular stabilization of the spine - A survivorship analysis of 163 cases. Spine 1994, 19, 2774–2779. [Google Scholar] [CrossRef] [PubMed]
- Muschik, M.; Luck, W.; Schlenzka, D. Implant removal for late-developing infection after instrumented posterior spinal fusion for scoliosis: reinstrumentation reduces loss of correction. A retrospective analysis of 45 cases. Eur. Spine J. 2004, 13, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Hallab, N.; Link, H.D.; Mcafee, P.C. Biomaterial optimization in total disc arthroplasty. Spine 2003, 28, S139–S152. [Google Scholar] [CrossRef] [PubMed]
- Hallab, N.J.; Cunningham, B.W.; Jacobs, J.J. Spinal implant debris-induced osteolysis. Spine 2003, 28, S125–S138. [Google Scholar] [CrossRef] [PubMed]
- Govaert, L.E.; Engels, T.A.P.; Sontjens, H.M.; Smit, T.H. Time-dependent failure in load-bearing polymers: A potential hazard in structural applications of polylactides. In Degradable Polymers for Skeletal Implants; Wuisman, P.I., Smit, T.H., Eds.; Nova Science Publishers: New York, NY, USA, 2009; pp. 21–40. [Google Scholar]
- Bjarke, C.F.; Stender, H.E.; Laursen, M.; Thomsen, K.; Bunger, C.E. Long-term functional outcome of pedicle screw instrumentation as a support for posterolateral spinal fusion: Randomized clinical study with a 5-year follow-up. Spine 2002, 27, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Brantigan, J.W.; Steffee, A.D.; Lewis, M.L.; Quinn, L.M.; Persenaire, J.M. Lumbar interbody fusion using the Brantigan I/F Cage for posterior lumbar interbody fusion and the variable pedicle screw placement system - Two-year results from a food and drug administration investigational device exemption clinical trial. Spine 2000, 25, 1437–1446. [Google Scholar] [CrossRef] [PubMed]
- Ray, C.D. Threaded fusion cages for lumbar interbody fusions - An economic comparison with 360 degrees fusions. Spine 1997, 22, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Blumenthal, S.L.; Gill, K. Can lumbar spine radiographs accurately determine fusion in postoperative-patients - correlation of routine radiographs with a 2Nd surgical look at lumbar fusions. Spine 1993, 18, 1186–1189. [Google Scholar] [CrossRef] [PubMed]
- Brodsky, A.E.; Kovalsky, E.S.; Khalil, M.A. Correlation of radiologic assessment of lumbar spine fusions with surgical exploration. Spine 1991, 16, S261–S265. [Google Scholar] [CrossRef] [PubMed]
- Cizek, G.R.; Boyd, L.M. Imaging pitfalls of interbody spinal implants. Spine 2000, 25, 2633–2636. [Google Scholar] [CrossRef] [PubMed]
- Kant, A.P.; Daum, W.J.; Dean, S.M.; Uchida, T. Evaluation of lumbar spine fusion - plain radiographs versus direct surgical exploration and observation. Spine 1995, 20, 2313–2317. [Google Scholar] [CrossRef] [PubMed]
- Fogel, G.R.; Toohey, J.S.; Neidre, A.; Brantigan, J.W. Fusion assessment of posterior lumbar interbody fusion using radiolucent cages: X-ray films and helical computed tomography scans compared with surgical exploration of fusion. Spine J. 2008, 8, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, R.J.; Ferrara, L.A.; Benzel, E.C. Biomechanics of bone fusion. Neurosurg. Focus 2001, 10. [Google Scholar] [CrossRef]
- Smit, T.H.; Muller, R.; Van Dijk, M.; Wuisman, P.I.J.M. Changes in bone architecture during spinal fusion: Three years follow-up and the role of cage stiffness. Spine 2003, 28, 1802–1808. [Google Scholar] [CrossRef] [PubMed]
- Vaccaro, A.R.; Madigan, L. Spinal applications of bioabsorbable implants. J. Neurosurg. 2002, 97 (Suppl), 407–412. [Google Scholar] [PubMed]
- Van Dijk, M.; Smit, T.H.; Sugihara, S.; Burger, E.H.; Wuisman, P.I. The effect of cage stiffness on the rate of lumbar interbody fusion: an in vivo model using poly(l-lactic Acid) and titanium cages. Spine 2002, 27, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, M.; Smit, T.H.; Burger, E.H.; Wuisman, P.I. Bioabsorbable poly-l-lactic acid cages for lumbar interbody fusion: Three-year follow-up radiographic, histologic, and histomorphometric analysis in goats. Spine 2002, 27, 2706–2714. [Google Scholar] [CrossRef] [PubMed]
- Krijnen, M.R.; Mullender, M.G.; Smit, T.H.; Everts, V.; Wuisman, P.I. Radiographic, histologic, and chemical evaluation of bioresorbable 70/30 poly-l-lactide-CO-D, l-lactide interbody fusion cages in a goat model. Spine 2006, 31, 1559–1567. [Google Scholar] [CrossRef] [PubMed]
- Park, M.S.; Aryan, H.E.; Ozgur, B.M.; Jandial, R.; Taylor, W.R. Stabilization of anterior cervical spine with bioabsorbable polymer in one- and two-level fusions. Neurosurg. 2004, 54, 631–635. [Google Scholar] [CrossRef]
- Vaccaro, A.R.; Carrino, J.A.; Venger, B.H.; Albert, T.; Kelleher, P.M.; Hilibrand, A. Use of a bioabsorbable anterior cervical plate in the treatment of cervical degenerative and traumatic disc disruption. J. Neurosurg. 2002, 97 (Suppl), 473–480. [Google Scholar] [PubMed]
- Athanasiou, K.A.; Agrawal, C.M.; Barber, F.A.; Burkhart, S.S. Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy 1998, 14, 726–737. [Google Scholar] [CrossRef] [PubMed]
- Smit, T.H.; Engels, T.A.P.; Wuisman, P.I.J.M.; Govaert, L.E. Time-dependent mechanical strength of 70/30 poly(l, dl-lactide). Spine 2008, 33, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Huiskes, R.; Ruimerman, R.; van Lenthe, G.H.; Janssen, J.D. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 2000, 405, 704–706. [Google Scholar] [CrossRef] [PubMed]
- Smit, T.H.; Odgaard, A.; Schneider, E. Structure and function of vertebral trabecular bone. Spine 1997, 22, 2823–2833. [Google Scholar] [CrossRef] [PubMed]
- Cordewener, F.W.; Bos, R.R.; Rozema, F.R.; Houtman, W.A. Poly(l-lactide) implants for repair of human orbital floor defects: clinical and magnetic resonance imaging evaluation of long-term results. J. Oral Maxillofac. Surg. 1996, 54, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Ignatius, A.A.; Wolf, S.; Augat, P.; Claes, L.E. Composites made of rapidly resorbable ceramics and poly(lactide) show adequate mechanical properties for use as bone substitute materials. J. Biomed. Mater. Res. 2001, 57, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Wuisman, P.I.; Van Dijk, M.; Smit, T.H. Resorbable cages for spinal fusion: An experimental goat model. J. Neurosurg. 2002, 97 (Suppl.), 433–439. [Google Scholar] [PubMed]
- Van Dijk, M.; Tunc, D.C.; Smit, T.H.; Higham, P.; Burger, E.H.; Wuisman, P.I. In vitro and in vivo degradation of bioabsorbable PLLA spinal fusion cages. J. Biomed. Mater. Res. 2002, 63, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, M.; Smit, T.H.; Arnoe, M.F.; Burger, E.H.; Wuisman, P.I. The use of poly-l-lactic acid in lumbar interbody cages: Design and biomechanical evaluation in vitro. Eur. Spine J. 2003, 12, 34–40. [Google Scholar] [PubMed]
- Bostman, O. Economic considerations on avoiding implant removals after fracture fixation by using absorbable devices. Scand. J. Soc. Med. 1994, 22, 41–45. [Google Scholar] [PubMed]
- Juutilainen, T.; Patiala, H.; Ruuskanen, M.; Rokkanen, P. Comparison of costs in ankle fractures treated with absorbable or metallic fixation devices. Arch. Orthop. Trauma. Surg. 1997, 116, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Sinisaari, I.; Patiala, H.; Bostman, O. Wound infections associated with absorbable or metallic devices used in the fixation of fractures, arthrodeses, and osteotomies. Eur. J. Orthop. Surg. Traumatol. 1995, 5, 41–43. [Google Scholar] [CrossRef] [PubMed]
- Sinisaari, I.; Patiala, H.; Bostman, O.; Makela, E.A.; Hirvensalo, E.; Partio, E.K.; Törmälä, P.; Rokkanen, P. Metallic or absorbable implants for ankle fractures: A comparative study of infections in 3,111 cases. Acta Orthop. Scand. 1996, 67, 16–18. [Google Scholar] [CrossRef] [PubMed]
- Koort, J.K.; Suokas, E.; Veiranto, M.; Makinen, T.J.; Jalava, J.; Tormala, P.; Aro, H.T. In vitro and in vivo testing of bioabsorbable antibiotic containing bone filler for osteomyelitis treatment. J. Biomed. Mater. Res. A 2006, 78A, 532–540. [Google Scholar]
- Koort, J.K.; Makinen, T.J.; Suokas, E.; Veirant, M.; Jalava, J.; Tormala, P.; Aro, H.T. Sustained release of ciprofloxacin from an osteoconductive poly(dl)-lactide implant. Acta Orthop. 2008, 79, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Makinen, T.J.; Veiranto, M.; Lankinen, P.; Moritz, N.; Jalava, J.; Tormala, P.; Aro, H.T. In vitro and in vivo release of ciprofloxacin from osteoconductive bone defect filler. J. Antimicrob. Chemother. 2005, 56, 1063–1068. [Google Scholar]
- Ramchandani, M.; Robinson, D. In vitro and in vivo release of ciprofloxacin from PLGA 50:50 implants. J. Control. Release 1998, 54, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Roy, T.D.; Simon, J.L.; Ricci, J.L.; Rekow, E.D.; Thompson, V.P.; Parsons, J.R. Performance of degradable composite bone repair products made via three-dimensional fabrication techniques. J. Biomed. Mater. Res. A 2003, 66, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Story, B.J.; Wagner, W.R.; Gaisser, D.M.; Cook, S.D.; Rust-Dawicki, A.M. In vivo performance of a modified CSTi dental implant coating. Int. J. Oral Maxillofac. Implants 1998, 13, 749–757. [Google Scholar] [PubMed]
- Karageorgiou, V.; Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26, 5474–5491. [Google Scholar] [CrossRef] [PubMed]
- Kuboki, Y.; Jin, Q.; Kikuchi, M.; Mamood, J.; Takita, H. Geometry of artificial ECM: Sizes of pores controlling phenotype expression in BMP-induced osteogenesis and chondrogenesis. Connect. Tissue Res. 2002, 43, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Ashammakhi, N.; Ndreu, A.; Yang, Y.; Ylikauppila, H.; Nikkola, L.; Hasirci, V. Tissue engineering: A new take-off using nanofiber-based scaffolds. J. Craniofac. Surg. 2007, 18, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Murphy, W.L.; Mooney, D.J. Bioinspired growth of crystalline carbonate apatite on biodegradable polymer substrata. J. Am. Chem. Soc. 2002, 124, 1910–1917. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef] [PubMed]
- Cowan, C.M.; Shi, Y.Y.; Aalami, O.O.; Chou, Y.F.; Mari, C.; Thomas, R.; Quarto, N.; Contag, C.H.; Wu, B.; Longaker, M.T. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat. Biotechnol. 2004, 22, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Lendlein, A.; Jiang, H.; Junger, O.; Langer, R. Light-induced shape-memory polymers. Nature 2005, 434, 879–882. [Google Scholar] [CrossRef] [PubMed]
- Alteheld, A.; Feng, Y.; Kelch, S.; Lendlein, A. Biodegradable, amorphous copolyester-urethane networks having shape-memory polymers. Angew. Chem. Int. Ed. Engl. 2005, 44, 1188–1192. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zhou, S.; Li, X.; Weng, J. Shape memory properties of poly(d,l-lactide)/hydroxyapatite composites. Biomaterials 2006, 27, 4288–4295. [Google Scholar] [CrossRef] [PubMed]
- Brocchini, S.; James, K.; Tangpasuthadol, V.; Kohn, J. Structure-property correlations in a combinatorial library of degradable biomaterials. J. Biomed. Mater. Res. 1998, 42, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Weber, N.; Bolikal, D.; Bourke, S.L.; Kohn, J. Small changes in the polymer structure influence the adsorption behavior of fibrinogen on polymer surfaces: Validation of a new rapid screening technique. J. Biomed. Mater. Res. A 2004, 68, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Leong, K.F.; Cheah, C.M.; Chua, C.K. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 2003, 24, 2363–2378. [Google Scholar] [CrossRef] [PubMed]
- Sachlos, E.; Reis, N.; Ainsley, C.; Derby, B.; Czernuszka, J.T. Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials 2003, 24, 1487–1497. [Google Scholar] [CrossRef] [PubMed]
- Mondrinos, M.J.; Koutzaki, S.; Jiwanmall, E.; Li, M.; Dechadarevian, J.P.; Lelkes, P.I.; Finck, C.M. Engineering three-dimensional pulmonary tissue constructs. Tissue Eng. 2006, 12, 717–728. [Google Scholar] [CrossRef] [PubMed]
- Porter, N.L.; Pilliar, R.M.; Grynpas, M.D. Fabrication of porous calcium polyphosphate implants by solid freeform fabrication: AA study of processing parameters and in vitro degradation characteristics. J. Biomed. Mater. Res. 2001, 56, 504–515. [Google Scholar] [CrossRef] [PubMed]
- Simon, C.G., Jr.; Stephens, J.S.; Dorsey, S.M.; Becker, M.L. Fabrication of combinatorial polymer scaffold libraries. Rev. Sci. Instrum. 2007, 78, 072207. [Google Scholar] [CrossRef] [PubMed]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kroeze, R.J.; Helder, M.N.; Govaert, L.E.; Smit, T.H. Biodegradable Polymers in Bone Tissue Engineering. Materials 2009, 2, 833-856. https://doi.org/10.3390/ma2030833
Kroeze RJ, Helder MN, Govaert LE, Smit TH. Biodegradable Polymers in Bone Tissue Engineering. Materials. 2009; 2(3):833-856. https://doi.org/10.3390/ma2030833
Chicago/Turabian StyleKroeze, Robert J., Marco N. Helder, Leon E. Govaert, and Theo H. Smit. 2009. "Biodegradable Polymers in Bone Tissue Engineering" Materials 2, no. 3: 833-856. https://doi.org/10.3390/ma2030833