The 15th Anniversary of Materials—Recent Advances in Materials Chemistry
Funding
Conflicts of Interest
List of Contributions
- Liu, F.; Yang, H.; Feng, X. Research Progress in Preparation, Properties and Applications of Biomimetic Organic-Inorganic Composites with “Brick-and-Mortar” Structure. Materials 2023, 16, 4094.
- Guo, J.; Luo, K.; Zou, W.; Xu, J.; Guo, B. Enhancing Mesopore Volume and Thermal Insulation of Silica Aerogel via Ambient Pressure Drying-Assisted Foaming Method. Materials 2024, 17, 2641.
- Khademsameni, H.; Jafari, R.; Allahdini, A.; Momen, G. Regenerative Superhydrophobic Coatings for Enhanced Performance and Durability of High-Voltage Electrical Insulators in Cold Climates. Materials 2024, 17, 1622.
- Tsioptsias, C. Desolvation Inability of Solid Hydrates, an Alternative Expression for the Gibbs Free Energy of Solvation, and the Myth of Freeze-Drying. Materials 2024, 17, 2508.
- Colomban, P.; Gallet, X.; Simsek Franci, G.; Fournery, N.; Quette, B. Non-Invasive Raman Classification Comparison with pXRF of Monochrome and Related Qing Porcelains: Lead-Rich-, Lead-Poor-, and Alkali-Based Glazes. Materials 2024, 17, 3566.
- Shi, X.; Yang, J.; Wang, W.; Liu, Z.; Shen, C. Electrochemical Atomic Force Microscopy Study on the Dynamic Evolution of Lithium Deposition. Materials 2023, 16, 2278.
- Bützer, P.; Bützer, M.R.; Piffaretti, F.; Schneider, P.; Lustenberger, S.; Walther, F.; Brühwiler, D. Quinacridones as a Building Block for Sustainable Gliding Layers on Ice and Snow. Materials 2024, 17, 3543.
- Park, S.; Kwon, H.; Park, S.; Oh, S.; Lee, K.; Lee, H.; Kang, S.; Park, D.; Park, J. New Bipolar Host Materials Based on Indolocarbazole for Red Phosphorescent OLEDs. Materials 2024, 17, 4347.
- Park, S.; Lee, C.; Lee, H.; Lee, K.; Kwon, H.; Park, S.; Park, J. Improving the Electroluminescence Properties of New Chrysene Derivatives with High Color Purity for Deep-Blue OLEDs. Materials 2024, 17, 1887.
- Su, Y.; Ma, B.; Huang, S.; Xiao, M.; Wang, S.; Han, D.; Meng, Y. Block Copoly (Ester-Carbonate) Electrolytes for LiFePO4|Li Batteries with Stable Cycling Performance. Materials 2024, 17, 3855.
- Chen, T.; Han, X.; Jie, M.; Guo, Z.; Li, J.; He, X. Mo-Doped Na4Fe3(PO4)2P2O7/C Composites for High-Rate and Long-Life Sodium-Ion Batteries. Materials 2024, 17, 2679.
- Jia, X.; Yan, K.; Sun, Y.; Chen, Y.; Tang, Y.; Pan, J.; Wan, P. Solvothermal Guided V2O5 Microspherical Nanoparticles Constructing High-Performance Aqueous Zinc-Ion Batteries. Materials 2024, 17, 1660.
- Macías, J.; Frade, J.R.; Yaremchenko, A.A. SrTiO3-SrVO3 Ceramics for Solid Oxide Fuel Cell Anodes: A Route from Oxidized Precursors. Materials 2023, 16, 7638.
- Tian, T.; Wang, Z.; Li, K.; Jin, H.; Tang, Y.; Sun, Y.; Wan, P.; Chen, Y. Study on Influence Factors of H2O2 Generation Efficiency on Both Cathode and Anode in a Diaphragm-Free Bath. Materials 2024, 17, 1748.
- Wang, J.; Ghosh, D.B.; Zhang, Z. Computational Materials Design for Ceramic Nuclear Waste Forms Using Machine Learning, First-Principles Calculations, and Kinetics Rate Theory. Materials 2023, 16, 4985.
- Scrimshire, A.; Backhouse, D.J.; Deng, W.; Mann, C.; Ogden, M.D.; Sharrad, C.A.; Harrison, M.T.; McKendrick, D.; Bingham, P.A. Benchtop Zone Refinement of Simulated Future Spent Nuclear Fuel Pyroprocessing Waste. Materials 2024, 17, 1781.
- Abbas, M.; Murari, B.; Sheybani, S.; Joy, M.; Balkus, K.J., Jr. Synthesis and Characterization of Highly Fluorinated Hydrophobic Rare–Earth Metal–Organic Frameworks (MOFs). Materials 2024, 17, 4213.
- Matejczyk, M.; Ofman, P.; Wiater, J.; Świsłocka, R.; Kondzior, P.; Lewandowski, W. Determination of the Effect of Wastewater on the Biological Activity of Mixtures of Fluoxetine and Its Metabolite Norfluoxetine with Nalidixic and Caffeic Acids with Use of E. coli Microbial Bioindicator Strains. Materials 2023, 16, 3600.
- Baldino, L.; Sarnelli, S.; Scognamiglio, M.; Reverchon, E. Production of Biopolymeric Microparticles to Improve Cannabigerol Bioavailability. Materials 2024, 17, 4227.
References
- Sugiyama, M.; Akiyama, M.; Yonezawa, Y.; Komaguchi, K.; Higashi, M.; Nozaki, K.; Okazoe, T. Electron in a Cube: Synthesis and Characterization of Perfluorocubane as an Electron Acceptor. Science 2022, 377, 756–759. [Google Scholar] [CrossRef]
- Fukui, N. Skeletal Transformation of π-Conjugated Molecules for Functional Materials. Bull. Chem. Soc. Jpn. 2025, 98, uoaf062. [Google Scholar] [CrossRef]
- Pradhan, S.; Mohammadi, F.; Tanase, R.; Amaike, K.; Itami, K.; Bouffard, J. C–H Amination of Arenes and Heteroarenes through a Dearomative (3 + 2) Cycloaddition. J. Am. Chem. Soc. 2025, 147, 27731–27742. [Google Scholar] [CrossRef]
- Han, M.; Nagaura, T.; Kim, J.; Alshehri, S.M.; Ahamad, T.; Bando, Y.; Alowasheeir, A.; Asakura, Y.; Yamauchi, Y. Mesoporous Materials 2.0: Innovations in Metals and Chalcogenides for Future Applications. Bull. Chem. Soc. Jpn. 2025, 98, uoae136. [Google Scholar] [CrossRef]
- Irie, T.; Sasaki, K.; Das, S.; Negishi, Y. Materials Innovation and the Changing Face of Photocatalytic and Electrocatalytic Carbon Dioxide Reduction Research: From Metal Nanoclusters to Extended. Angew. Chem. Int. Ed. 2025, 64, e202515667. [Google Scholar]
- Ishii, W.; Nakashima, T. Insights into the Excited-State Behavior of Metal Nanoclusters: From Structure-Based Properties to Dynamic Control via Ionic Association. Bull. Chem. Soc. Jpn. 2025, 98, uoaf090. [Google Scholar]
- Liu, C.; Morimoto, N.; Jiang, L.; Kawahara, S.; Noritomi, T.; Yokoyama, H.; Mayumi, K.; Ito, K. Tough Hydrogels with Rapid Self-Reinforcement. Science 2021, 372, 1078–1081. [Google Scholar] [CrossRef]
- Kamigaito, M. Step-Growth Irreversible Deactivation Radical Polymerization: Synergistic Developments with Chain-Growth Reversible Deactivation Radical Polymerization. Bull. Chem. Soc. Jpn. 2024, 97, uoae069. [Google Scholar]
- Amaya, T.; Otake, Y. Development of Self-Doped Conductive Polymers with Phosphonic Acid moieties. Bull. Chem. Soc. Jpn. 2025, 98, uoaf033. [Google Scholar] [CrossRef]
- Kitagawa, S.; Kitaura, R.; Noro, S. Functional Porous Coordination Polymers. Angew. Chem. Int. Ed. 2004, 43, 2334–2375. [Google Scholar]
- Kitao, T. Precise Synthesis and Assembly of π-Conjugated Polymers Enabled by Metal–Organic Frameworks. Bull. Chem. Soc. Jpn. 2024, 97, uoae103. [Google Scholar]
- Nakatani, R.; Irie, T.; Das, S.; Fang, Q.; Negishi, Y. Converging the Complementary Traits of Metal–Organic Frameworks and Covalent Organic Frameworks. ACS Appl. Mater. Interfaces 2025, 17, 24701–24729. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Kato, Y.; Higashiharaguchi, S.; Aratsu, K.; Isobe, A.; Saito, T.; Prabhu, D.D.; Kitamoto, Y.; Hollamby, M.J.; Smith, A.J.; et al. Self-Assembled Poly-catenanes from Supramolecular Toroidal Building Blocks. Nature 2020, 583, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Akine, S. Structural Conversions of Host–Guest Systems and Dynamic Metal Complexes for Development of Time-Dependent Functions. Bull. Chem. Soc. Jpn. 2025, 98, uoaf084. [Google Scholar] [CrossRef]
- Kataria, M.; Seki, S. Responsive Chirality: Tailoring Supramolecular Assemblies with External Stimuli as Future Platforms for Electronic/Spintronic Materials. Chem. Eur. J. 2025, 31, e202403460. [Google Scholar] [CrossRef] [PubMed]
- Mori, T. Mechanical Control of Molecular Machines at an Air–Water Interface: Manipulation of Molecular Pliers, Paddles. Sci. Technol. Adv. Mater. 2024, 25, 2334667. [Google Scholar] [CrossRef]
- Tahara, T. Working on a dream: Bringing up the Level of Interface Spectroscopy to the Bulk Level. Bull. Chem. Soc. Jpn. 2024, 97, uoae012. [Google Scholar] [CrossRef]
- Terui, R.; Otsuki, Y.; Shibasaki, Y.; Atsuhiro Fujimori, A. Metal-Ðesorption and selective metal-trapping properties of an organized molecular film of azacalixarene-containing copolymer with spherulite-forming ability. Bull. Chem. Soc. Jpn. 2024, 97, uoae050. [Google Scholar] [CrossRef]
- Liang, S.; Feng, H.; Chen, N.; Wang, B.; Hu, M.; Huang, X.X.; Yang, K.; Gu, Y. Preparation of Biomass Carbon Dots/Carboxymethyl Cellulose-Based Fluorescent Hydrogel: Combines Selective Detection and Visual Adsorption for Copper(II). Bull. Chem. Soc. Jpn. 2024, 97, uoae054. [Google Scholar]
- Miyazaki, S.; Ogiwara, N.; Nagasaka, C.A.; Takiishi, K.; Inada, M.; Uchida, S. Pore Design of POM@MOF Hybrids for Enhanced Methylene Blue Capture. Bull. Chem. Soc. Jpn. 2024, 97, uoae105. [Google Scholar] [CrossRef]
- Nabika, H. Structural Selection Rules in Self-Assembly and Self-Organization: Role of Entropy Production Rate. Bull. Chem. Soc. Jpn. 2025, 98, Iuoaf048. [Google Scholar] [CrossRef]
- Yuan, J.; Yang, Y.; Dai, K.; Fakhrullin, R.; Li, H.; Zhou, P.; Yuan, C.; Yan, X. Peptide Coacervates: Formation, Mechanism, and Biological Applications. ACS Appl. Mater. Interfaces 2025, 17, 27697–27712. [Google Scholar] [CrossRef]
- Sugawara, T.; Matsuo, M.; Toyota, T. “Life” as a Dynamic Supramolecular System Created through Constructive Approach. Bull. Chem. Soc. Jpn. 2025, 98, uoae134. [Google Scholar] [CrossRef]
- Hata, Y.; Miyazaki, H.; Okamoto, S.; Serizawa, T.; Nakamura, S. Nanospiked Cellulose Gauze that Attracts Bacteria with Biomolecules for Reducing Bacterial Load in Burn Wounds. Nano Lett. 2025, 25, 1177–1184. [Google Scholar] [CrossRef]
- Sugimoto, Y.; Pou, P.; Abe, M.; Jelinek, P.; Pérez, R.; Morita, S.; Custance, Ó. Chemical Identification of Individual Surface Atoms by atomic force microscopy. Nature 2007, 446, 64–67. [Google Scholar] [CrossRef]
- Nakamuro, T. High-Speed Iimaging and Quantitative Analysis of Nonequilibrium Stochastic Processes using Atomic Resolution Electron Microscopy. Bull. Chem. Soc. Jpn. 2024, 97, uoae082. [Google Scholar] [CrossRef]
- Oyamada, N.; Minamimoto, H.; Fukushima, T.; Zhou, R.; Murakoshi, K. Beyond Single-Molecule Chemistry for Electrified Interfaces Using Molecule Polaritons. Bull. Chem. Soc. Jpn. 2024, 97, uoae007. [Google Scholar] [CrossRef]
- Jia, Y.; Yan, X.; Li, J. Schiff Base Mediated Dipeptide Assembly toward Nanoarchitectonics. Angew. Chem. Int. Ed. 2022, 61, e202207752. [Google Scholar] [CrossRef]
- Guan, X.; Li, Z.; Geng, X.; Lei, Z.; Karakoti, A.; Wu, T.; Kumar, P.; Yi, J.; Vinu, A. Emerging Trends of Carbon-Based Quantum Dots: Nanoarchitectonics and Applications. Small 2023, 19, 2207181. [Google Scholar] [CrossRef]
- Yang, T.; Skirtach, A.G. Nanoarchitectonics of Sustainable Food Packaging: Materials, Methods, and Environmental Factors. Materials 2025, 18, 1167. [Google Scholar] [CrossRef]
- Yospanya, W.; Matsumura, A.; Imasato, Y.; Itou, T.; Aoki, Y.; Nakazawa, H.; Matsui, T.; Yokoyama, T.; Ui, M.; Umetsu, M.; et al. Design of Cyborg Proteins by Loop Region Replacement with Oligo(ethylene glycol): Exploring Suitable Mutations for Cyborg Protein Construction using Machine Learning. Bull. Chem. Soc. Jpn. 2024, 97, uoae090. [Google Scholar] [CrossRef]
- Nakayama, K.; Sakakibara, K. Machine Learning Strategy to Improve Impact Strength for PP/Cellulose Composites via Selection of Biomass Fillers. Sci. Technol. Adv. Mater. 2024, 25, 2351356. [Google Scholar] [CrossRef] [PubMed]
- Parakhonskiy, B.V.; Song, J.; Skirtach, A.G. Machine Learning in Nanoarchitectonics. Adv. Colloid Interface Sci. 2025, 343, 103546. [Google Scholar] [CrossRef]
- Gossage, Z.T.; Igarashi, D.; Fujii, Y.; Kawaguchi, M.; Tatara, R.; Nakamoto, K.; Komaba, S. New Frontiers in Alkali Metal Insertion into Carbon Electrodes for Energy Storage. Chem. Sci. 2024, 15, 18272–18294. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Kondo, Y.; Ohashi, N.; Sakamoto, C.; Hasegawa, A.; Hu, S.; Truong, M.A.; Murdey, R.; Kanemitsu, Y.; Wakamiya, A. Materials Chemistry for Metal Halide Perovskite Photovoltaics. Bull. Chem. Soc. Jpn. 2024, 97, uoad025. [Google Scholar] [CrossRef]
- Hisatomi, T.; Yamada, T.; Nishiyama, H.; Takata, T.; Domen, K. Materials and Systems for Large-Scale Photocatalytic Water Splitting. Nat. Rev. Mater. 2025, 10, 769–782. [Google Scholar] [PubMed]
- Chen, C.; Fei, L.; Wang, B.; Xu, J.; Li, B.; Shen, L.; Lin, H. MOF-Based Photocatalytic Membrane for Water Purification: A Review. Small 2024, 20, 2305066. [Google Scholar] [CrossRef]
- Zhou, S.; Ding, J. Utilize Natural Forces in Water Treatment through 3D-Printed Structures: From Purification to Clean Energy. Adv. Mater. 2025, 37, e09185. [Google Scholar] [CrossRef]
- Sasaki, R.; Umezane, S.; Yamana, K.; Kawasaki, R.; Ikeda, A. Recognition of Fluoride Ions by Triphenylborane Complexed with a Polysaccharide in Water. Bull. Chem. Soc. Jpn. 2025, 98, uoaf065. [Google Scholar] [CrossRef]
- Hui, K.K.; Yamanaka, S. iPS Cell Therapy 2.0: Preparing for Next-Generation Regenerative Medicine. BioEssays 2024, 46, 2400072. [Google Scholar] [CrossRef]
- Sutrisno, L.; Richards, G.J.; Evans, J.D.; Matsumoto, M.; Li, X.L.; Uto, K.; Hill, J.P.; Taki, M.; Yamaguchi, S.; Ariga, K. Visualizing the Chronicle of Multiple Cell Fates Using a Near-IR Dual-RNA/DNA–Targeting Probe. Sci. Adv. 2025, 11, eadz6633. [Google Scholar] [PubMed]
- Yoshida, K.; Suzuki, T.; Osakada, Y.; Fujitsuka, M.; Miyatake, Y.; Biju, V.; Takano, Y. Exploring Photo-Excited States of Aromatic Sulfones for Efficient Near-Infrared-Activated Photothermal Cancer Therapy. Bull. Chem. Soc. Jpn. 2025, 98, uoae137. [Google Scholar] [CrossRef]
- Chen, G.; Isegawa, M.; Koide, T.; Yoshida, Y.; Harano, K.; Hayashida, K.; Fujita, S.; Takeyasu, K.; Ariga, K.; Nakamura, J. Pentagon-Rich Caged Carbon Catalyst for the Oxygen Reduction Reaction in Acidic Electrolytes. Angew. Chem. Int. Ed. 2024, 63, e202410747. [Google Scholar] [CrossRef]
- Song, J.; Kawakami, K.; Ariga, K. Localized Assembly in Biological Activity: Origin of Life and Future of Nanoarchitectonics. Adv. Colloid Interface Sci. 2025, 339, 103420. [Google Scholar] [CrossRef]
- Ji, F.; Yu, J.; Hou, S.; Hu, J.; Li, S. Doping Engineering in Manganese Oxides for Aqueous Zinc-Ion Batteries. Materials 2024, 17, 3327. [Google Scholar] [CrossRef] [PubMed]
- Bamburov, A.; Kravchenko, E.; Yaremchenko, A.A. Impact of Thermochemical Treatments on Electrical Conductivity of Donor-Doped Strontium Titanate Sr(Ln)TiO3 Ceramics. Materials 2024, 17, 3876. [Google Scholar]
- Ariga, K. Nanoarchitectonics: The Method for Everything in Materials Science. Bull. Chem. Soc. Jpn. 2024, 97, uoad001. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ariga, K. The 15th Anniversary of Materials—Recent Advances in Materials Chemistry. Materials 2026, 19, 329. https://doi.org/10.3390/ma19020329
Ariga K. The 15th Anniversary of Materials—Recent Advances in Materials Chemistry. Materials. 2026; 19(2):329. https://doi.org/10.3390/ma19020329
Chicago/Turabian StyleAriga, Katsuhiko. 2026. "The 15th Anniversary of Materials—Recent Advances in Materials Chemistry" Materials 19, no. 2: 329. https://doi.org/10.3390/ma19020329
APA StyleAriga, K. (2026). The 15th Anniversary of Materials—Recent Advances in Materials Chemistry. Materials, 19(2), 329. https://doi.org/10.3390/ma19020329
