First-Principles Study of the Stability, Electronic Structure, and Mechanical Properties of Ce-Doped MgZn2
Abstract
1. Introduction
2. Theoretical Models and Computational Methods
3. Results and Discussion
3.1. Crystal Structure and Stability
3.2. Electronic Structure
3.3. Mulliken Charge Analysis
4. Mechanical Properties
5. Discussion on the Mechanism and Engineering Significance of Toughness Enhancement
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pollock, T.M. Weight loss with magnesium alloys. Science 2010, 328, 986–987. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.M.; Morton, A.J.; Nie, J.F. The 18R and 14H long-period stacking ordered structures in Mg–Y–Zn alloys. Acta Mater. 2010, 58, 2936–2947. [Google Scholar] [CrossRef]
- Liu, S.; Esteban-Manzanares, G.; Llorca, J. First-principles analysis of precipitation in Mg–Zn alloys. Phys. Rev. Mater. 2020, 4, 093609. [Google Scholar] [CrossRef]
- Cheng, D.; Wang, K.; Zhou, B.-C. Crystal structure and stability of phases in Mg–Zn alloys: A comprehensive first-principles study. Acta Mater. 2022, 230, 118443. [Google Scholar] [CrossRef]
- Wu, H.-F.; Hu, W.-X.; Ma, S.-B.; Yang, Z.-H.; Wang, W.; Liu, F.; He, W. Effect of Ce on microstructure and mechanical properties of Mg–Zn–xCe magnesium alloys. China Foundry 2023, 20, 271–279. [Google Scholar] [CrossRef]
- Li, Y.; Guo, F.; Cai, H.; Wang, Y.; Liu, L. The effect of (Mg, Zn)\12Ce phase content on the microstructure and the mechanical properties of Mg–Zn–Ce–Zr alloy. Materials 2022, 15, 4420. [Google Scholar] [CrossRef]
- Langelier, B.; Esmaeili, S. Effects of Ce additions on the age hardening response of Mg–Zn alloys. Mater. Charact. 2015, 101, 1–8. [Google Scholar] [CrossRef]
- Chen, J.; Liu, J.; Lu, S.; Zhong, L.; Chen, L.; Wang, Y. First-principles calculations on the stability, electronic structure, and mechanical properties of Y-doped MgZn2. Surf. Technol. 2023, 52, 444–450. [Google Scholar]
- Yao, H.; Zhao, Y.; Zhang, X.; Wang, N.; Yu, H.; Qiu, R.; Wang, S.; Cao, W. Microstructure and properties of solution-treated Mg–1.5Zn–0.4Zr–0.5Gd biological magnesium alloys at different extrusion ratios. Mater. Today Commun. 2024, 41, 110868. [Google Scholar] [CrossRef]
- Mao, P.-L.; Yu, B.; Liu, Z.; Wang, F.; Ju, Y. Mechanical properties and electronic structures of MgCu2, Mg2Ca and MgZn2 Laves phases by first-principles calculations. Trans. Nonferrous Met. Soc. China 2014, 24, 2920–2929. [Google Scholar] [CrossRef]
- Gu, J.; Gao, M.; Yang, S.; Bai, J.; Zhai, Y.; Ding, J. Microstructure, defects, and mechanical properties of wire + arc additively manufactured Al Cu4.3-Mg1.5 alloy. Mater. Des. 2019, 186, 108357. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First-principles methods using CASTEP. Z. Für Krist.—Cryst. Mater. 2005, 220, 567–570. [Google Scholar] [CrossRef]
- Marlo, M.; Milman, V. Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals. Phys. Rev. B 2000, 62, 2899–2907. [Google Scholar] [CrossRef]
- Bouchaud, J.P.; Zérah, P.G. The theory of ultrasoft magnetic films. J. Appl. Phys. 1990, 68, 3783–3785. [Google Scholar] [CrossRef]
- Fischer, T.H.; Almlof, J. General methods for geometry and wave function optimization. J. Phys. Chem. 1992, 96, 9768–9774. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.L.; Wu, Y.M.; Wang, L.M.; Zhang, H.J. Extended application of edge-to-edge matching model to HCP/HCP (α-Mg/MgZn2) system in magnesium alloys. Mater. Sci. Eng. A 2007, 460, 296–300. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, W.-C.; Li, D.-J.; Zeng, X.-Q.; Xu, C.-S. Theoretical predictions of the structural and thermodynamic properties of MgZn2 Laves phase under high pressure. Appl. Phys. A Mater. Sci. Process. 2014, 115, 323–331. [Google Scholar] [CrossRef]
- Ran, X.-D.; Huang, S.-H.; Zhou, S.-L.; Lei, W.; Wu, Y.; Chen, Q. First-principles study of structural stability and mechanical properties of Ta–W–Hf alloys: The role of formation and cohesive energy. Metals 2023, 13, 655. [Google Scholar] [CrossRef]
- Medvedeva, N.I.; Gornostyrev, Y.N.; Novikov, D.L.; Mryasov, O.N.; Freeman, A.J. Ternary site preference energies, size misfits and solid solution hardening in NiAl and FeAl. Acta Mater. 1998, 46, 3433–3442. [Google Scholar] [CrossRef]
- Liao, F.; Fan, S.-t.; Deng, Y.-l.; Zhang, J. First-Principle Calculations of Mechanical Properties of Al2Cu, Al2CuMg and MgZn2 Intermetallics in High Strength Aluminum Alloys. J. Aeronaut. Mater. 2016, 36, 1–8. [Google Scholar] [CrossRef]
- Du, Y.L.; Sun, Z.M.; Hashimoto, H.; Tian, W.B. First-principles study on electronic structure and elastic properties of Ti2SC. Phys. Lett. A 2008, 372, 5220–5223. [Google Scholar] [CrossRef]
- Cao, Y.; Luo, P.; Xu, Y.; Zhou, S. Theoretical prediction of anisotropic elastic, density of states and thermodynamic properties of Ti–X (X = Fe, Co, Zn) alloys. Eur. Phys. J. B 2021, 94, 246. [Google Scholar] [CrossRef]
- Ye, J.-F.; Qing, M.-Z.; Xiao, Q.-Q.; Wang, A.-S.; He, A.-N.; Xie, Q. First-principles study of electronic structure, magnetic and optical properties of Ti, V, Co and Ni doped two-dimensional CrSi2 materials. Acta Phys. Sin. 2021, 70, 227301. [Google Scholar] [CrossRef]
- Sitaraman, N.S.; Kelley, M.M.; Porter, R.D.; Liepe, M.U.; Arias, T.A.; Carlson, J.; Pack, A.R.; Transtrum, M.K.; Sundararaman, R. Effect of the density of states at the Fermi level on defect free energies and superconductivity: A case study of Nb3Sn. Phys. Rev. B 2021, 103, 115106. [Google Scholar] [CrossRef]
- Mulliken, R.S. Electronic population analysis on LCAO–MO molecular wave functions. J. Chem. Phys. 1955, 23, 1833–1840. [Google Scholar] [CrossRef]
- Santos, C.V., Jr.; Kraka, E.; Moura, R.T., Jr. Chemical Bond Overlap Descriptors from Multiconfiguration Wavefunctions. J. Comput. Chem. 2024, 45, 10442–10460. [Google Scholar] [CrossRef]
- Yang, X.-G.; Liang, X.-P.; Wang, Y.; Luan, B.-F. First-principles study on phase stability and elastic properties of Zr–Ti alloys. Rare Met. Mater. Eng. 2020, 49, 2004–2010. [Google Scholar]
- Born, M.; Huang, K. Dynamical Theory of Crystal Lattices; Clarendon Press: Oxford, UK, 1985; ISBN 978-0-19-851248-6. [Google Scholar]
- Hill, R. On discontinuous plastic states, with special reference to localized necking in thin sheets. J. Mech. Phys. Solids 1952, 1, 19–30. [Google Scholar] [CrossRef]
- Xie, Y.-P.; Wang, Z.-Y.; Hou, Z.-F. The phase stability and elastic properties of MgZn2 and Mg4Zn7 in Mg–Zn alloys. Scr. Mater. 2013, 68, 495–498. [Google Scholar] [CrossRef]
- Seidenkranz, T.; Hegenbarth, E. Single-crystal elastic constants of MgZn2 in the temperature range from 4.2 to 300 K. Phys. Status Solidi A 1976, 33, 205–210. [Google Scholar] [CrossRef]
- Huang, W.; Liu, F.; Liu, J.; Tuo, Y. First-principles study on mechanical properties and electronic structures of Ti–Al intermetallic compounds. J. Mater. Res. 2019, 34, 1112–1120. [Google Scholar] [CrossRef]
- Zhang, J.; Dong, H.; Li, X.; Wang, Z.; Dong, X. First-principles study on the stability and mechanical properties of TiCx N1 − x (0 <x <1). J. Mater. Sci. 2023, 58, 4474–4486. [Google Scholar] [CrossRef]
- Zhou, D.-W.; Xu, S.-H.; Zhang, F.-Q.; Peng, P.; Liu, J.-S. First-principles study of the structural stability and elastic properties of AB2 intermetallic compounds in ZA62 magnesium alloy. Acta Metall. Sin. 2010, 46, 97–103. [Google Scholar] [CrossRef]
- Ditta, A.; Wei, L.-J.; Xu, Y.-J.; Wu, S. Effect of Hot Extrusion and Optimal Solution Treatment on Microstructure and Properties of Spray-Formed Al-11.3Zn-2.65Mg-1Cu Alloy. J. Alloys Compd. 2019, 797, 558–565. [Google Scholar] [CrossRef]
- Li, X.Z.; Hansen, V.; Gjønnes, J.; Wallenberg, L.R. HREM Study and Structure Modeling of the η′ Phase, the Hardening Precipitates in Commercial Al-Zn-Mg Alloys. Acta Mater. 1999, 47, 2651–2659. [Google Scholar] [CrossRef]
- Zhang, X.-G.; Mei, F.-Q.; Zhang, H.-Y.; Wang, S.-H.; Fang, C.-F.; Hao, H. Effects of Gd and Y Additions on Microstructure and Properties of Al–Zn–Mg–Cu–Zr Alloys. Mater. Sci. Eng. A 2012, 552, 230–235. [Google Scholar] [CrossRef]
- Yi, D.Q.; Wang, B.; Fang, X.; Yao, S.J.; Zhou, L.L.; Luo, W.H. Effect of Rare-Earth Elements Y and Ce on the Microstructure and Mechanical Properties of ZK60 Alloy. Mater. Sci. Forum 2005, 488, 103–106. [Google Scholar] [CrossRef]



| Phase | Reference | Crystal System | a0 (Å) | c0 (Å) | c0/a0 | V0 (Å3) |
|---|---|---|---|---|---|---|
| MgZn2 | Present | 5.222 | 8.595 | 1.645 | 202.979 | |
| Exp. [16] | Hexagonal | 5.222 | 8.568 | 1.640 | 202.341 | |
| Cal. [17] | 5.198 | 8.554 | 1.645 | 200.171 | ||
| Mg3Zn8Ce | Present | Trigonal | 5.257 | 9.008 | 1.714 | 215.593 |
| Mg4Zn7Ce-1 | Present | Trigonal | 5.195 | 10.136 | 1.951 | 236.901 |
| Mg4Zn7Ce-2 | Present | Orthorhombic | 5.633 | 8.763 | 1.556 | 240.863 |
| Phase | Hform/(kJ·mol−1) | Ecoh/(kJ·mol−1) | |
|---|---|---|---|
| MgZn2 | Present | −13.025 | −138.375 |
| Cal. [20] | −13.346 | −132.628 | |
| Cal. [21] | −10.90 | −139.60 | |
| Mg3Zn8Ce | Present | −17.234 | −168.250 |
| Mg4Zn7Ce-1 | Present | −8.310 | −158.840 |
| Mg4Zn7Ce-2 | Present | −1.068 | −153.935 |
| Orbits | |||||||
|---|---|---|---|---|---|---|---|
| Phase | Atom | s | p | d | f | Total | Charge(e) |
| MgZn2 | Mg | 0.515 | 6.471 | 0.000 | 0.000 | 6.896 | 1.014 |
| Zn(Ⅰ) | 0.798 | 1.778 | 9.950 | 0.000 | 12.525 | −0.525 | |
| Zn(Ⅱ) | 0.729 | 1.774 | 9.950 | 0.000 | 12.453 | −0.453 | |
| Mg3Zn8Ce | Mg | 0.539 | 6.453 | 0.000 | 0.000 | 6.992 | 1.008 |
| Zn(Ⅰ) | 0.802 | 1.698 | 9.948 | 0.000 | 12.448 | −0.448 | |
| Zn(Ⅱ) | 0.816 | 1.719 | 9.949 | 0.000 | 12.484 | −0.484 | |
| Ce | 2.261 | 5.863 | 2.190 | 1.071 | 11.385 | 0.615 | |
| Mg4Zn7Ce | Mg | 0.519 | 6.446 | 0.000 | 0.000 | 6.965 | 1.035 |
| Zn(Ⅰ) | 0.776 | 1.731 | 9.951 | 0.000 | 12.458 | −0.458 | |
| Zn(Ⅱ) | 0.660 | 1.625 | 9.954 | 0.000 | 12.239 | −0.239 | |
| Ce | 2.465 | 6.260 | 2.055 | 1.118 | 11.897 | 0.103 | |
| Phase | C11 | C12 | C13 | C33 | C44 | |
|---|---|---|---|---|---|---|
| MgZn2 | Present | 90.280 | 62.976 | 27.683 | 124.624 | 25.390 |
| Cal. [30] | 92 | 62 | 37 | 126 | 24 | |
| Exp. [31] | 107.25 | 45.45 | 27.43 | 126.40 | 27.70 | |
| Mg3Zn8Ce | Present | 97.676 | 48.833 | 43.610 | 86.175 | 28.954 |
| Mg4Zn7Ce | Present | 84.304 | 40.462 | 34.133 | 58.856 | 9.275 |
| Phase. | B/GPa | G/GPa | E/GPa | G/B | υ | ||
|---|---|---|---|---|---|---|---|
| MgZn2 | Present | 60.207 | 19.627 | 53.110 | 0.326 | 0.353 | 1.923 |
| Cal. [30] | 60.61 | 22.52 | 60.53 | 0.35 | 0.34 | ||
| Exp. [34] | 70.71 | 16.12 | 45.57 | 0.23 | 0.39 | ||
| Mg3Zn8Ce | Present | 61.300 | 25.918 | 68.149 | 0.423 | 0.315 | 3.195 |
| Mg4Zn7Ce | Present | 48.377 | 14.830 | 40.365 | 0.306 | 0.361 | 1.374 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Guo, J.; Zhao, H.; Hui, Z.; Zhang, L.; Liu, H. First-Principles Study of the Stability, Electronic Structure, and Mechanical Properties of Ce-Doped MgZn2. Materials 2026, 19, 50. https://doi.org/10.3390/ma19010050
Guo J, Zhao H, Hui Z, Zhang L, Liu H. First-Principles Study of the Stability, Electronic Structure, and Mechanical Properties of Ce-Doped MgZn2. Materials. 2026; 19(1):50. https://doi.org/10.3390/ma19010050
Chicago/Turabian StyleGuo, Jiaxing, Hongyang Zhao, Zhanyi Hui, Lin Zhang, and Hongyu Liu. 2026. "First-Principles Study of the Stability, Electronic Structure, and Mechanical Properties of Ce-Doped MgZn2" Materials 19, no. 1: 50. https://doi.org/10.3390/ma19010050
APA StyleGuo, J., Zhao, H., Hui, Z., Zhang, L., & Liu, H. (2026). First-Principles Study of the Stability, Electronic Structure, and Mechanical Properties of Ce-Doped MgZn2. Materials, 19(1), 50. https://doi.org/10.3390/ma19010050

