Preparation and Properties of Phase Change Energy Storage Composites Based on Modified Fly Ash
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fly Ash Pretreatment
2.2. Acid-Alkali Modification Protocols
- (1)
- Thermal Activation (TA-FA):
- The pretreated FA was directly calcined under identical conditions (600 °C, 2 h) for comparative analysis.
- (2)
- Acid Leaching Modification (AL-FA):
- Prepared hydrochloric acid solution with a certain concentration gradient (0.5–2 mol/L, 0.5 mol/L increments);
- Mixed the two in a beaker at a liquid/solid ratio (10:1);
- Conducted continuous magnetic stirring at 90 °C for 2 h;
- Performed vacuum filtration followed by neutralization washing;
- Dried obtained FA at 70 °C for 24 h.
- (3)
- Alkaline Modification (AM-FA):
- Prepared sodium hydroxide solution with a certain concentration gradient (0.5–2 mol/L, 0.5 mol/L increments);
- Established liquid/solid system (10:1 v/w ratio) in a PTFE reaction vessel;
- Conducted continuous magnetic stirring at 90 °C for 2 h;
- Performed vacuum filtration followed by neutralization washing;
- Post-dried at 70 °C until constant mass (Δm < 0.1% over 2 h).
2.3. Preparation of Al-12Si/FA SSPCM
- R: the efficiency of A in Al-12Si/MFA (%);
- : composite PCM latent heat (DSC measurement);
- ΔH0: latent heat of pure Al-12Si (DSC measurements);
- w: mass fraction of initial alloy in SSPCM.
2.4. Characterization
3. Results and Discussion
3.1. Chemical Composition and Characterization of FA/MFA
3.2. Structural and Physical Analysis of FA, MFA
3.3. Maximum Loading Ratio of FA, MFA on Al-12Si Alloy
3.4. Mechanical Performance Analysis
- Microstructural densification: The superior fluidity of molten Al-12Si allows it to efficiently penetrate into the fly ash matrix through capillaries. Compared with the low-alloy composites, the alloy content increases from 50 wt% to 65 wt%, the porosity decreases from 17.8% to 11.5%, and the complex and irregular pores gradually disappear. Stress transfer is more uniform, and the risk of a localized rupture is reduced [33,34]. However, the main reason for the decrease in strength of the composites as the alloy content increases is the large difference in the coefficient of thermal expansion between the ceramic matrix and the alloy reinforcement [35]. As the composites are working, the stresses generated by the thermal expansion of the two tend to crack the material, shortening the service life of the phase change material.
- Interfacial strengthening [35]: The increase in working temperature enhances the fluidity of the alloy, generating internal vapor pressure, which drives the liquid phase flow. The penetration of the alloy melt between pores during the sintering process forms mechanical interlocking [36] (mechanical interlocking). To achieve the purpose of interfacial enhancement. Meanwhile, the composite of porous ceramics and Al-Si alloy through high-temperature sintering significantly improves the flexural strength through the generation of the Al-Si-O glass phase [37] by the Si element at the interface. This process promotes the interfacial bonding between the metal phase and the ceramic matrix, resulting in a 4.5% increase in the density of the composite compared to the ceramic matrix (ρ = 1.74→1.82 g/cm3).
3.5. Thermal Performance Analysis
4. Conclusions
4.1. FA Modification Mechanisms
4.2. Superior Thermal Performance
4.3. Microstructural and Chemical Stability
5. Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Strojny, J.; Krakowiak-Bal, A.; Knaga, J.; Kacorzyk, P. Energy security: A conceptual overview. Energies 2023, 16, 5042. [Google Scholar] [CrossRef]
- Tozer, L.; Klenk, N. Urban configurations of carbon neutrality: Insights from the Carbon Neutral Cities Alliance. Environ. Plan. C Politics Space 2019, 37, 539–557. [Google Scholar] [CrossRef]
- Aftab, W.; Usman, A.; Shi, J.; Yuan, K.; Qin, M.; Zou, R. Phase change material-integrated latent heat storage systems for sustainable energy solutions. Energy Environ. Sci. 2021, 14, 4268–4291. [Google Scholar] [CrossRef]
- Zhang, N.; Yuan, Y.; Cao, X.; Du, Y.; Zhang, Z.; Gui, Y. Latent heat thermal energy storage systems with solid–liquid phase change materials: A review. Adv. Eng. Mater. 2018, 20, 1700753. [Google Scholar] [CrossRef]
- Yang, G.; Yim, Y.J.; Lee, J.W.; Heo, Y.J.; Park, S.J. Carbon-filled organic phase-change materials for thermal energy storage: A review. Molecules 2019, 24, 2055. [Google Scholar] [CrossRef]
- Tao, J.; Luan, J.; Liu, Y.; Qu, D.; Yan, Z.; Ke, X. Technology development and application prospects of organic-based phase change materials: An overview. Renew. Sustain. Energy Rev. 2022, 159, 112175. [Google Scholar] [CrossRef]
- Nicolalde, J.F.; Martinez-Gómez, J.; Guerrero, V.H.; Chico-Proano, A. Experimental performance of avocado seed oil as a bio-based phase change material for refrigeration applications. Int. J. Refrig. 2024, 168, 632–647. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, M.; Sun, Y. Review on the development of high temperature phase change material composites for solar thermal energy storage. Sol. Energy Mater. Sol. Cells 2019, 203, 110164. [Google Scholar] [CrossRef]
- Liu, K.; Zhou, J.; Liu, Y.; Mao, N.; Sun, L.; Wang, Y.; Xu, L.; Zhang, K.; Wang, C.; Yang, H. Flame retardant wood-based phase change materials with inorganic hydrated salt for thermal energy storage. Ind. Crops Prod. 2025, 227, 120825. [Google Scholar] [CrossRef]
- Xiao, X.; Jia, H.; Pervaiz, S.; Wen, D. Molten salt/metal foam/graphene nanoparticle phase change composites for thermal energy storage. ACS Appl. Nano Mater. 2020, 3, 5240–5251. [Google Scholar] [CrossRef]
- Manasijević, D.; Balanović, L.; Cimpoesu, N.; Marković, I.; Gorgievski, M.; Stamenković, U.; Stepanović, A. Investigation of thermal properties of Al–Cu eutectic alloy for phase change energy storage applications. J. Therm. Anal. Calorim. 2024, 150, 77–85. [Google Scholar] [CrossRef]
- Shi, C.; Xu, M.; Guo, X.; Zhu, S.; Zou, D. Characteristics, Encapsulation Strategies, and Applications of Al and Its Alloy Phase Change Materials for Thermal Energy Storage: A Comprehensive Review. Adv. Funct. Mater. 2025, 35, 2412914. [Google Scholar] [CrossRef]
- Wang, K.; Tao, K.; Guo, M.; Wang, T.; Liao, Z.; Ye, F.; Xu, C.; Du, X. Thermal and cyclic performance of aluminum alloy composite phase change microcapsules for high-temperature thermal energy storage. Sol. Energy Mater. Sol. Cells 2024, 277, 113128. [Google Scholar] [CrossRef]
- Zhu, S.; Nguyen, M.T.; Yonezawa, T. Micro-and nano-encapsulated metal and alloy-based phase-change materials for thermal energy storage. Nanoscale Adv. 2021, 3, 4626–4645. [Google Scholar] [CrossRef]
- Liao, Z.; Xu, C.; Ren, Y.; Gao, F.; Ju, X.; Du, X. A novel effective thermal conductivity correlation of the PCM melting in spherical PCM encapsulation for the packed bed TES system. Appl. Therm. Eng. 2018, 135, 116–122. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, S.; Zhao, X.; Huang, L.; Zou, D. Preparation and thermal performance of a novel alloy microencapsulated phase change material (MEPCM)/ceramic composite. Int. J. Therm. Sci. 2022, 176, 107478. [Google Scholar] [CrossRef]
- Han, C.; Gu, H.; Zhang, M.; Huang, A.; Chen, Y. Preparation and formation mechanism of Al-Si/Al2O3 core-shell structured particles fabricated via steam corrosion. Ceram. Int. 2019, 45, 13809–13817. [Google Scholar] [CrossRef]
- Nomura, T.; Yoolerd, J.; Sheng, N.; Sakai, H.; Hasegawa, Y.; Haga, M.; Saito, G.; Akiyama, T. Microencapsulation of eutectic and hyper-eutectic Al-Si alloy as phase change materials for high-temperature thermal energy storage. Sol. Energy Mater. Sol. Cells 2018, 187, 255–262. [Google Scholar] [CrossRef]
- Jacob, R.; Bruno, F. Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage. Renew. Sustain. Energy Rev. 2015, 48, 79–87. [Google Scholar] [CrossRef]
- Fukahori, R.; Nomura, T.; Zhu, C.; Sheng, N.; Okinaka, N.; Akiyama, T. Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage. Appl. Energy 2016, 170, 324–328. [Google Scholar] [CrossRef]
- Lao, X.; Xu, X.; Wu, J.; Xu, X. High-temperature alloy/honeycomb ceramic composite materials for solar thermal storage applications: Preparation and stability evaluation. Ceram. Int. 2017, 43, 4583–4593. [Google Scholar] [CrossRef]
- Ji, R.; Wei, S.; Xia, Y.; Huang, C.; Huang, Y.; Zhang, H.; Xu, F.; Sun, L.; Lin, X. Enhanced thermal performance of form-stable composite phase-change materials supported by novel porous carbon spheres for thermal energy storage. J. Energy Storage 2020, 27, 101134. [Google Scholar] [CrossRef]
- Morita, S.-I.; Haniu, T.; Takai, K.; Yamada, T.; Hayamizu, Y.; Gonda, T.; Horibe, A.; Haruki, N. Thermal conductivity estimation of Carbon-Nanotube-dispersed phase change material as latent heat storage material. Int. J. Thermophys. 2022, 43, 70. [Google Scholar] [CrossRef]
- Ram, A.K.; Mohanty, S. State of the art review on physicochemical and engineering characteristics of fly ash and its applications. Int. J. Coal Sci. Technol. 2022, 9, 9. [Google Scholar] [CrossRef]
- Feng, S.; Li, Y. Study on coal fly ash classified by bulk density. J. Phys. Conf. Series 2021, 1732, 012127. [Google Scholar] [CrossRef]
- ASTM C618-22; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM: West Conshohocken, PA, USA, 2012.
- Das, D.; Rout, P.K. A review of coal fly ash utilization to save the environment. Water Air Soil Pollut. 2023, 234, 128. [Google Scholar] [CrossRef]
- Sinha, P.; Datar, A.; Jeong, C.; Deng, X.; Chung, Y.G.; Lin, L.-C. Surface area determination of porous materials using the Brunauer–Emmett–Teller (BET) method: Limitations and improvements. J. Phys. Chem. C 2019, 123, 20195–20209. [Google Scholar] [CrossRef]
- Ma, A.; Cai, C.; Yang, J.; Zhou, T. Measuring thermophysical properties of building insulation materials using transient plane heat source method. Energy Build. 2021, 240, 110891. [Google Scholar] [CrossRef]
- Zhong, S.; Yin, G.; Peng, H.; Xiang, J.; Lin, Q.; He, H.; Chen, Z. Preparation, characterization and sludge conditioning performance of modified coal fly ash. J. Taiwan Inst. Chem. Eng. 2017, 78, 447–454. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Palomo, A.; Criado, M. Microstructure development of alkali-activated fly ash cement: A descriptive model. Cem. Concr. Res. 2005, 35, 1204–1209. [Google Scholar] [CrossRef]
- Marhoon, A.A.; Hasbullah, S.A.; Asikin-Mijan, N.; Mokhtar, W.N.A.W. Hydrothermal synthesis of high-purity zeolite X from coal fly ash for heavy metal removal: Kinetic and isotherm analysis. Adv. Powder Technol. 2023, 34, 104242. [Google Scholar] [CrossRef]
- Timakul, P.; Rattanaprasit, W.; Aungkavattana, P. Enhancement of compressive strength and thermal shock resistance of fly ash-based geopolymer composites. Constr. Build. Mater. 2016, 121, 653–658. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, W.Y.; Yang, T.Y.; Yoon, S.Y.; Kim, B.K.; Park, H.C. Fabrication of porous ceramic composites with improved compressive strength from coal fly ash. Adv. Appl. Ceram. 2011, 110, 244–250. [Google Scholar] [CrossRef]
- Jia, M.; Yu, K.; Liu, Y.; Yang, Y. Enabling superior thermo-mechanical performance of hydrated salt-based phase change energy storage cementitious composite using graphene oxide reinforced micro-interface. J. Build. Eng. 2023, 76, 107166. [Google Scholar] [CrossRef]
- Xu, H.; Magro, F.D.; Sadiki, N.; Mancaux, J.-M.; Py, X.; Romagnoli, A. Compatibility study between aluminium alloys and alternative recycled ceramics for thermal energy storage applications. Appl. Energy 2018, 220, 94–105. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, T.; Huang, Q.; Luo, Z.; Lu, A.; Zhu, L. Preparation, properties characterization and structure formation mechanism of silica sand tailings-based ceramic materials. Mater. Chem. Phys. 2020, 255, 123611. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; Xu, Q.; Luo, Q.; Song, Y.; Tian, Y.; Chen, M.; Xuan, Y.; Jin, Y.; Jia, Y.; et al. High thermal conductivity and high energy density compatible latent heat thermal energy storage enabled by porous AlN ceramics composites. Int. J. Heat Mass Transf. 2021, 175, 121405. [Google Scholar] [CrossRef]
Sample | SiO2 | Al2O3 | CaO | Fe2O3 | MgO | Na2O | Loss on Ignition |
---|---|---|---|---|---|---|---|
FA | 51.10 | 26.43 | 3.96 | 4.65 | 0.79 | 0.72 | 7.74 |
FA-H | 59.97 | 23.42 | 1.60 | 1.26 | 0.51 | 0.55 | 6.86 |
FA-OH | 39.30 | 31.65 | 4.18 | 4.60 | 0.87 | 8.69 | 7.35 |
Concentration (mol/L) | HCl/Specific Surface Area (m2/g) | HCl/Total Pore Volume (cm3/g) | NaOH/Specific Surface Area (m2/g) | NaOH/Total Pore Volume (cm3/g) |
---|---|---|---|---|
0.5 | 7.35 | 0.012 | 9.31 | 0.023 |
1 | 18.26 | 0.017 | 19.23 | 0.046 |
1.5 | 25.34 | 0.023 | 31.24 | 0.069 |
2.0 | 34.06 | 0.026 | 40.86 | 0.085 |
2.5 | 36.47 | 0.027 | 41.86 | 0.073 |
3.0 | 37.51 | 0.026 | 42.75 | 0.064 |
Al-12Si Alloy Content (wt%) | Compressive Strength (MPa) | Porosity of Composites (%) |
---|---|---|
50 | 46.4 | 17.8 |
55 | 51.5 | 15.4 |
60 | 47.1 | 13.1 |
65 | 44.3 | 11.5 |
Item | FA | Al-12Si | Al-12Si/FA-OH SSPCM |
---|---|---|---|
thermal conductivity (W/(m·K)) | 0.18 | 101.45 | 18.24 |
Number of Cycles | 0 | 20 | 40 | 60 | 80 | 100 |
---|---|---|---|---|---|---|
Mass (g) | 3.71 | 3.78 | 3.79 | 3.81 | 3.82 | 3.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Yu, Q.; Deng, Y.; Su, Q.; Xiao, T.; Sun, Y. Preparation and Properties of Phase Change Energy Storage Composites Based on Modified Fly Ash. Materials 2025, 18, 2153. https://doi.org/10.3390/ma18092153
Li C, Yu Q, Deng Y, Su Q, Xiao T, Sun Y. Preparation and Properties of Phase Change Energy Storage Composites Based on Modified Fly Ash. Materials. 2025; 18(9):2153. https://doi.org/10.3390/ma18092153
Chicago/Turabian StyleLi, Chaoheng, Qingchun Yu, Yong Deng, Qixiang Su, Tianlie Xiao, and Yifan Sun. 2025. "Preparation and Properties of Phase Change Energy Storage Composites Based on Modified Fly Ash" Materials 18, no. 9: 2153. https://doi.org/10.3390/ma18092153
APA StyleLi, C., Yu, Q., Deng, Y., Su, Q., Xiao, T., & Sun, Y. (2025). Preparation and Properties of Phase Change Energy Storage Composites Based on Modified Fly Ash. Materials, 18(9), 2153. https://doi.org/10.3390/ma18092153