Effects of Solid–Solution Temperature on Microstructures and Mechanical Properties of 2200 MPa Grade Secondary Hardening Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Heat Treatment
2.2. Thermodynamic Calculation and Solid–Solution Temperature
2.3. Mechanical Property Tests
2.4. Microstructure Characterization
3. Results and Discussion
3.1. Mechanical Properties and Fracture Appearance
3.2. Microstructures
3.3. The Influence of Solid–Solution Temperature on Undissolved Phases
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Symbol | Significance |
UHSS | Ultra–high–strength steels |
HCP | Hexagonal close–packed |
PAG | Primary austenite grain |
ρGND | Geometrically necessary dislocation density |
HAGB | High angle grain boundaries |
EDS | Energy–dispersive spectroscopy |
SEAD | Selected area electron diffraction |
SEM | Scanning electron microscope |
TEM | Transmission electron microscopy |
OM | Optical microscope |
Rm | Tensile strength |
Rp0.2 | Yield strength |
KAM | Kernel Average Misorientation |
References
- Li, J.H.; Zhan, D.P.; Jiang, Z.H.; Zhang, H.S.; Yang, Y.K.; Zhang, Y.P. Progress on improving strength-toughness of ultra-high strength martensitic steels for aerospace applications: A review. J. Mater. Res. Technol. 2023, 23, 172–190. [Google Scholar] [CrossRef]
- Luo, H.W.; Shen, G.H. Progress and Perspective of Ultra-High Strength Steels Having High Toughness. Acta Metall. Sin. 2020, 56, 494–512. [Google Scholar]
- Zhong, P.; Xiao, K.; Dong, C.F.; Zhong, J.Y.; Sun, M.; Li, X.G. Microstructure, Properties and Corrosion Behavior of Ultra-High Strength Steels; Science Press: Beijing, China, 2014. [Google Scholar]
- Bakhshi, S.; Asadi Asadabad, M.; Bakhshi, S. Influence of the heat treatment on the quantitative features of the fracture surfaces and the mechanical properties of AISI 4340 steel sheets. Ironmak. Steelmak. 2023, 50, 295–309. [Google Scholar] [CrossRef]
- Dong, Y.; Lan, X.Q.; Yang, S.; Lu, J.X.; Yan, S.Y.; Wei, K.; Wang, Z.M. Effect of quenching and tempering treatments on microstructure and mechanical properties of 300M ultra-high strength steel fabricated by laser powder bed fusion. Mater. Charact. 2024, 212, 113935. [Google Scholar] [CrossRef]
- Li, R.H.; Hu, X.Y.; Wang, Z.C.; Li, H.; Yang, Y.; Xu, L.; Liang, E.P.; He, X.F. High-temperature Mechanical Properties and Strengthening Mechanism of New Secondary Hardened Steel 25CrMo3NiTiVNbZr. Chin. J. Mater. Res. 2024, 38, 390–400. [Google Scholar]
- Seo, J.Y.; Park, S.K.; Kwon, H.; Cho, K.S. Influence of carbide modifications on themechanical properties of ultra-high-strength stainless steels. Metall. Mater. Trans. A 2017, 48, 4477–4485. [Google Scholar] [CrossRef]
- Geng, R.M.; Han, S.; Pang, X.D.; Yuan, X.Y.; Liu, Y.; Li, Y.; Wang, C.X. Effects of Co on Mechanical Properties and Precipitates in a Novel Secondary−Hardening Steel with Duplex Strengthening of M2C and β−NiAl. Materials 2024, 17, 3261. [Google Scholar] [CrossRef]
- Shi, X.H.; Zeng, W.D.; Zhao, Q.Y.; Peng, W.W.; Kang, C. Study on the microstructure and mechanical properties of Aermet 100 steel at the tempering temperature around 482 °C. J. Alloys Compd. 2016, 679, 184–190. [Google Scholar] [CrossRef]
- Shi, L.Q.; Ran, X.Z.; Zhai, Y.M.; Pan, Y.; Zhang, S.Q.; Cheng, X.; Tang, H.-B.; Wang, H.-M. Influence of isothermal tempering on microstructures and hydrogen-environmentally embrittlement susceptibility of laser additively manufactured ultra-high strength AerMet100 steel. Mater. Sci. Eng. A 2023, 876, 145167. [Google Scholar] [CrossRef]
- Wu, D.; Li, Y.; Wang, C.X.; Fu, W.T.; Tang, J.L. Precipitates and mechanical properties of 2200 MPa secondary-hardening ulra-high strengh steel. Iron Steel 2016, 51, 60–63+98. [Google Scholar]
- Yong, Q.L. Secondary Phase in Steel; Metallurgical Industry Press: Beijing, China, 2006; Volume 15. [Google Scholar]
- Wang, J.-S.; Mulholland, M.D.; Olson, G.B.; Seidman, D.N. Prediction of the yield strength of a secondary-hardening steel. Acta Mater. 2013, 61, 4939–4952. [Google Scholar] [CrossRef]
- Wang, X.; Yan, M. TEM observation of precipitation phase produced during tempering of steel AerMet100 and first principles calculations of phase evolution. Rare Met. 2007, S1, 326–330. [Google Scholar]
- Zhang, Y.P.; Zhan, D.P.; Qi, X.W.; Jiang, Z.H. Effect of solid-solution temperature on the microstructure and properties of ultra-high-strength ferrium S53® steel. Mater. Sci. Eng. 2018, 730, 41–49. [Google Scholar] [CrossRef]
- Yoo, C.H.; Lee, H.M.; Chan, J.W.; Morris, J.W. M2C precipitates in isothermal tempering of high Co-Ni secondary hardening steel. Metall. Mater. Trans. A 1996, 27, 3466–3472. [Google Scholar] [CrossRef]
- Liu, X.Q.; Wang, C.C.; Zhang, Y.F.; Wang, L.Y.; Xu, W. Design of a 2.7 GPa ultra-high-strength high Co–Ni secondary hardening steel by two-step nano-size precipitation tailoring. J. Mater. Res. Technol. 2024, 28, 4212–4221. [Google Scholar] [CrossRef]
- Xu, T.Z.; Wang, T.; Wang, M.S.; Zhang, S.; Zhang, C.H.; Wu, C.L.; Sun, X.Y.; Chen, H.T.; Chen, J. Influence of solid solution time on microstructure and precipitation strengthening of novel maraging steels. Mater. Sci. Eng. A 2025, 920, 147535. [Google Scholar] [CrossRef]
- Sun, J.; Wu, C.; Han, Y.; Liu, Z.H.; Sun, J.P.; Zu, G.Q.; Zhu, W.W. Influence of Solution Annealing Temperature on the Microstructure, Mechanical Properties, and Corrosion Resistance of a Lean Duplex Stainless Steel Fe-0.02C-20Cr-6Mn-1Ni-0.2N-0.35Si. J. Mater. Eng. Perform. 2024, 1–12. [Google Scholar] [CrossRef]
- Yuan, X.H.; Yang, M.S.; Gan, J.Z. Effect of solid solution temperature on carbide evolution and mechanical properties of Cr-Co-Mo martensitic steel. Heat Treat. Met. 2020, 45, 108–113. [Google Scholar]
- Xu, D.M.; Zhang, D.; Yang, G.W.; Wang, Q.; Bao, S.Q.; Zhao, G. Effect of quenching temperature on the austenite stability and mechanical properties of high-strength air-cooled TRIP steel prepared with hot-rolled C–Si–Mn sheets. J. Mater. Res. Technol. 2024, 31, 420–433. [Google Scholar] [CrossRef]
- Wei, S.Y.; Kumar, P.; Lau, K.B.; Wuu, D.; Liew, L.L.; Wei, F.X.; Teo, S.L.; Cheong, A.; Ng, C.K.; Zhang, B.C.; et al. Effect of heat treatment on the microstructure and mechanical properties of 2.4 GPa grade maraging steel fabricated by laser powder bed fusion. Addit. Manuf. 2022, 59 Pt B, 103190. [Google Scholar] [CrossRef]
- Wang, H.; Shi, M.; Hou, L.; Yin, C.K.; Di, M. Effect of Initial Microstructure on Austenite Grain Size of Niobium Microalloyed Steels. Phys. Met. Metallogr. 2024, 125, 1707–1717. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Xie, K.D.; Guo, H.Q.; Guo, H.Q.; Zhou, H.C.; Sun, M.Y.; Hao, L.H. Effect of austenitizing temperature on microstructure and mechanical properties of M54 secondary hardening steel. Trans. Mater. Heat Treat. 2022, 43, 118–127. [Google Scholar]
- Sun, J.; Li, Z.; Xia, M.L.; Luo, L.M.; Li, J.H.; Huang, Z.Y. Effect of solution treatment on microstructure and properties of Fe30Mn10Al1C low density steel. Trans. Mater. Heat Treat. 2024, 45, 121–131. [Google Scholar]
- Wang, C.X.; Gao, Y.H.; Han, S.; Liu, S.Z.; Zhang, P.J. Effects of solid-solution temperature on microstructure and mechanical properties of a novel 2000 MPa grade ultra-high-strength steel. J. Iron Steel Res. Int. 2020, 27, 710–718. [Google Scholar] [CrossRef]
- Bao, S.; Feng, H.; Song, Z.G.; He, J.G.; Gu, Y. Effect of solution temperature on microstructure and low cycle fatigue properties of S32750 duplex stainless steel. J. Iron Steel Res. 2024, 36, 217–225. [Google Scholar]
- Liu, Y.; Han, S.; Yang, C.; Geng, R.M.; Yuan, X.Y.; Li, Y.; Wang, C.X. Evolution of Microstructures and Mechanical Properties with Tempering Temperature in a Novel Synergistic Precipitation Strengthening Ultra-High Strength Steel. Materials 2024, 17, 5314. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Kim, K.S.; Song, Y.B.; Park, J.H.; Lee, K.A. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness. J. Mater. Sci. Technol. 2021, 66, 36–45. [Google Scholar] [CrossRef]
- Wu, N.H.; Lu, X.H.; An, R.; Ji, X.Y. Thermodynamic analysis and modification of Gibbs–Thomson equation for melting point depression of metal nanoparticles. Chin. J. Chem. Eng. 2021, 31, 198–205. [Google Scholar] [CrossRef]
- Papadaki, C.; Li, W.; Allen, C.S.; Danaie, M.; Brandt, L.R.; Korsunsky, A.M. Direct TEM observation and quantification of the Gibbs-Thomson effect in a nickel superalloy. arXiv 2022, arXiv:2210.02133. [Google Scholar]
- Liu, Y.; Han, S.; Geng, R.M.; Pang, X.D.; Liu, Y.; Lei, S.M.; Li, Y.; Wang, C.X. Effects of prior austenite and primary carbides on mechanical properties of a novel 2.5 GPa grade ultra-high strength steel. J. Iron Steel Res. Int. 2024. [Google Scholar]
- Yao, C.D. Study on Precipitation Phases and Low-Cycle Fatigue Performance of 2200 MPa Low-Pressure Turbine Shaft Steel. Master’s Thesis, Central Iron & Steel Research Institute, Beijing, China, 2024. [Google Scholar]
- Wang, S.H.; Li, J.; Chai, F.; Luo, X.B.; Yang, C.F.; Su, H. Influence of Solution Temperature on γ→ε Transformation and Damping Capacity of Fe-19Mn Alloy. Acta Metall. Sin. 2020, 56, 1217–1226. [Google Scholar]
C | Ni | Mo | Cr | Co | Fe |
---|---|---|---|---|---|
0.25 | 11 | 1.5 | 2.3 | 15 | Bal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Li, Y.; Han, S.; Pang, X.; Geng, R.; Li, X.; Wang, C. Effects of Solid–Solution Temperature on Microstructures and Mechanical Properties of 2200 MPa Grade Secondary Hardening Steel. Materials 2025, 18, 2126. https://doi.org/10.3390/ma18092126
Yang C, Li Y, Han S, Pang X, Geng R, Li X, Wang C. Effects of Solid–Solution Temperature on Microstructures and Mechanical Properties of 2200 MPa Grade Secondary Hardening Steel. Materials. 2025; 18(9):2126. https://doi.org/10.3390/ma18092126
Chicago/Turabian StyleYang, Cheng, Yong Li, Shun Han, Xuedong Pang, Ruming Geng, Xinyang Li, and Chunxu Wang. 2025. "Effects of Solid–Solution Temperature on Microstructures and Mechanical Properties of 2200 MPa Grade Secondary Hardening Steel" Materials 18, no. 9: 2126. https://doi.org/10.3390/ma18092126
APA StyleYang, C., Li, Y., Han, S., Pang, X., Geng, R., Li, X., & Wang, C. (2025). Effects of Solid–Solution Temperature on Microstructures and Mechanical Properties of 2200 MPa Grade Secondary Hardening Steel. Materials, 18(9), 2126. https://doi.org/10.3390/ma18092126