Flexible Strain Sensors Based on Printing Technology: Conductive Inks, Substrates, Printability, and Applications
Abstract
:1. Introduction
2. Sensor Performance Characteristics
2.1. Sensor Static Characteristics
2.2. Sensor Dynamics Characteristics
2.2.1. Response Time
2.2.2. Frequency Response
2.2.3. Dynamic Range
3. Printed Sensors and Printing Techniques
3.1. Inkjet Printing
3.2. Bar Coating
3.3. Screen Printing
3.4. Flexographic Printing
3.5. Three-Dimensional Printing
3.6. Gravure Printing
4. Printed Electronics Material
4.1. Metal Inks
4.2. Carbon Based Ink
4.3. Polymer Inks
4.4. Composite Inks
5. Characteristics of Inks and Substrates
5.1. Surface Tension
5.2. Contact Angle and Surface Energy
6. Applications and Challenges of Printing Flexible Strain Sensors
6.1. Applications of Flexible Strain Sensors
6.1.1. Wearable Devices for Health Monitoring
6.1.2. Human–Machine Interfaces (HMI)
6.1.3. Structural Health Monitoring
6.1.4. E-Skin and Prosthetics
6.1.5. Internet of Things (IoT) and Smart Textiles
6.2. Challenges in the Development of Printed Flexible Strain Sensors
6.2.1. Material Development and Conductive Inks
6.2.2. Printability and Process Optimization
6.2.3. Substrate Compatibility and Flexibility
6.2.4. Sensitivity and Long-Term Stability
6.2.5. Cost and Scalability
6.2.6. Degradation Mechanisms and Sustainable Strategies
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Allioui, H.; Mourdi, Y. Exploring the Full Potentials of IoT for Better Financial Growth and Stability: A Comprehensive Survey. Sensors 2023, 23, 8015. [Google Scholar] [CrossRef] [PubMed]
- McGrath, M.J.; Scanaill, C.N. Sensor Technologies: Healthcare, Wellness, and Environmental Applications; Springer Nature: Berlin/Heidelberg, Germany, 2013; ISBN 1430260149. [Google Scholar]
- Moseley, P.T.; Crocker, J. Sensor Materials; CRC Press: Boca Raton, FL, USA, 2020; ISBN 1000157253. [Google Scholar]
- Tompkins, W.J. Biomedical Digital Signal Processing; Prentice Hall: Saddle River, NJ, USA, 1993; Volume 237. [Google Scholar]
- De Marcellis, A.; Ferri, G.; De Marcellis, A.; Ferri, G. Physical and Chemical Sensors. In Analog Circuits and Systems for Voltage-Mode and Current-Mode Sensor Interfacing Applications; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–35. [Google Scholar]
- McGrath, M.J.; Scanaill, C.N.; McGrath, M.J.; Scanaill, C.N. Sensing and Sensor Fundamentals. In Sensor Technologies; Apress: Berkeley, CA, USA, 2013; pp. 15–50. [Google Scholar]
- Taylor, R.F.; Schultz, J.S. Handbook of Chemical and Biological Sensors; CRC Press: Boca Raton, FL, USA, 1996; ISBN 1420050486. [Google Scholar]
- Banica, F.-G. Chemical Sensors and Biosensors: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 1118354230. [Google Scholar]
- Svechtarova, M.I.; Buzzacchera, I.; Toebes, B.J.; Lauko, J.; Anton, N.; Wilson, C.J. Sensor Devices Inspired by the Five Senses: A Review. Electroanalysis 2016, 28, 1201–1241. [Google Scholar] [CrossRef]
- Rao, A.S.; Radanovic, M.; Liu, Y.; Hu, S.; Fang, Y.; Khoshelham, K.; Palaniswami, M.; Ngo, T. Real-Time Monitoring of Construction Sites: Sensors, Methods, and Applications. Autom. Constr. 2022, 136, 104099. [Google Scholar] [CrossRef]
- Luo, Y.; Abidian, M.R.; Ahn, J.-H.; Akinwande, D.; Andrews, A.M.; Antonietti, M.; Bao, Z.; Berggren, M.; Berkey, C.A.; Bettinger, C.J. Technology Roadmap for Flexible Sensors. ACS Nano 2023, 17, 5211–5295. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, K.; Deng, Y. Recent Progress in Pressure and Temperature Tactile Sensors: Principle, Classification, Integration and Outlook. Soft Sci. 2021, 1, 6. [Google Scholar] [CrossRef]
- Ripka, P.; Tipek, A. Modern Sensors Handbook; Wiley Online Library: Hoboken, NJ, USA, 2007; Volume 61. [Google Scholar]
- Pallas-Areny, R.; Webster, J.G. Sensors and Signal Conditioning; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 1118585933. [Google Scholar]
- Li, C.; Cordovilla, F.; Jagdheesh, R.; Ocaña, J.L. Design Optimization and Fabrication of a Novel Structural SOI Piezoresistive Pressure Sensor with High Accuracy. Sensors 2018, 18, 439. [Google Scholar] [CrossRef]
- Luo, Z.; Hu, X.; Tian, X.; Luo, C.; Xu, H.; Li, Q.; Li, Q.; Zhang, J.; Qiao, F.; Wu, X. Structure-Property Relationships in Graphene-Based Strain and Pressure Sensors for Potential Artificial Intelligence Applications. Sensors 2019, 19, 1250. [Google Scholar] [CrossRef]
- Tang, W.Y. Sensors, 1st ed.; China Machine Press: Beijing, China, 2007; pp. 6–12. (In Chinese) [Google Scholar]
- Fraden, J. Sensor Characteristics. In Handbook of Modern Sensors; Springer: Berlin/Heidelberg, Germany, 2010; pp. 13–52. [Google Scholar]
- Lange, D.; Hagleitner, C.; Hierlemann, A.; Brand, O.; Baltes, H. Complementary Metal Oxide Semiconductor Cantilever Arrays on a Single Chip: Mass-Sensitive Detection of Volatile Organic Compounds. Anal. Chem. 2002, 74, 3084–3095. [Google Scholar] [CrossRef]
- Liptak, B.G. Instrument Engineers’ Handbook, Volume Two: Process Control and Optimization; CRC Press: Boca Raton, FL, USA, 2018; ISBN 1315219026. [Google Scholar]
- Patranabi, D. Sensors and Tranducers; PHI Learning Pvt. Ltd.: Delhi, India, 2003; ISBN 8120321987. [Google Scholar]
- Shen, Z.; Liu, F.; Huang, S.; Wang, H.; Yang, C.; Hang, T.; Tao, J.; Xia, W.; Xie, X. Progress of Flexible Strain Sensors for Physiological Signal Monitoring. Biosens. Bioelectron. 2022, 211, 114298. [Google Scholar] [CrossRef]
- Jia, Y.; Sun, K.; Agosto, F.J.; Quinones, M.T. Design and Characterization of a Passive Wireless Strain Sensor. Meas. Sci. Technol. 2006, 17, 2869. [Google Scholar] [CrossRef]
- Li, J.; Bao, R.; Tao, J.; Peng, Y.; Pan, C. Recent Progress in Flexible Pressure Sensor Arrays: From Design to Applications. J. Mater. Chem. C 2018, 6, 11878–11892. [Google Scholar] [CrossRef]
- Osama, M.; Ateya, A.A.; Sayed, M.S.; Hammad, M.; Pławiak, P.; Abd El-Latif, A.A.; Elsayed, R.A. Internet of Medical Things and Healthcare 4.0: Trends, Requirements, Challenges, and Research Directions. Sensors 2023, 23, 7435. [Google Scholar] [CrossRef] [PubMed]
- Chong, C.-Y.; Kumar, S.P. Sensor Networks: Evolution, Opportunities, and Challenges. Proc. IEEE 2003, 91, 1247–1256. [Google Scholar] [CrossRef]
- Prauzek, M.; Konecny, J.; Borova, M.; Janosova, K.; Hlavica, J.; Musilek, P. Energy Harvesting Sources, Storage Devices and System Topologies for Environmental Wireless Sensor Networks: A Review. Sensors 2018, 18, 2446. [Google Scholar] [CrossRef]
- Nyabadza, A.; Vázquez, M.; Coyle, S.; Fitzpatrick, B.; Brabazon, D. Review of Materials and Fabrication Methods for Flexible Nano and Micro-Scale Physical and Chemical Property Sensors. Appl. Sci. 2021, 11, 8563. [Google Scholar] [CrossRef]
- Orts Mercadillo, V.; Chan, K.C.; Caironi, M.; Athanassiou, A.; Kinloch, I.A.; Bissett, M.; Cataldi, P. Electrically Conductive 2D Material Coatings for Flexible and Stretchable Electronics: A Comparative Review of Graphenes and MXenes. Adv. Funct. Mater. 2022, 32, 2204772. [Google Scholar] [CrossRef]
- Riemer, D.E. The Theoretical Fundamentals of the Screen Printing Process. Microelectron. Int. 1989, 6, 8–17. [Google Scholar] [CrossRef]
- Grau, G.; Cen, J.; Kang, H.; Kitsomboonloha, R.; Scheideler, W.J.; Subramanian, V. Gravure-Printed Electronics: Recent Progress in Tooling Development, Understanding of Printing Physics, and Realization of Printed Devices. Flex. Print. Electron. 2016, 1, 23002. [Google Scholar] [CrossRef]
- Liu, X.; Guthrie, J.T. A Review of Flexographic Printing Plate Development. Surf. Coat. Int. Part B Coat. Trans. 2003, 86, 91–99. [Google Scholar] [CrossRef]
- Pudas, M.; Hagberg, J.; Leppävuori, S. Printing Parameters and Ink Components Affecting Ultra-Fine-Line Gravure-Offset Printing for Electronics Applications. J. Eur. Ceram. Soc. 2004, 24, 2943–2950. [Google Scholar] [CrossRef]
- Singh, M.; Haverinen, H.M.; Dhagat, P.; Jabbour, G.E. Inkjet Printing—Process and Its Applications. Adv. Mater. 2010, 22, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Secor, E.B. Principles of Aerosol Jet Printing. Flex. Print. Electron. 2018, 3, 35002. [Google Scholar] [CrossRef]
- Mkhize, N.; Bhaskaran, H. Electrohydrodynamic Jet Printing: Introductory Concepts and Considerations. Small Sci. 2022, 2, 2100073. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.; Kim, D.; Moon, J. Influence of Fluid Physical Properties on Ink-Jet Printability. Langmuir 2009, 25, 2629–2635. [Google Scholar] [CrossRef]
- Verkouteren, R.M.; Verkouteren, J.R. Inkjet Metrology II: Resolved Effects of Ejection Frequency, Fluidic Pressure, and Droplet Number on Reproducible Drop-on-Demand Dispensing. Langmuir 2011, 27, 9644–9653. [Google Scholar] [CrossRef]
- Le, H.P. Progress and Trends in Ink-Jet Printing Technology. J. Imaging Sci. Technol. 1998, 42, 49–62. [Google Scholar] [CrossRef]
- MacLeod, D.M. Wire-Wound Rod Coating; Marcel Dekker: New York, NY, USA, 1991. [Google Scholar]
- Zhou, L.; Yu, M.; Yao, L.; Lai, W.-Y. Mayer Rod-coated Organic Light-emitting Devices: Binary Solvent Inks, Film Topography Optimization, and Large-area Fabrication. Adv. Eng. Mater. 2022, 24, 2101558. [Google Scholar] [CrossRef]
- Kwon, J.; Suh, Y.D.; Lee, J.; Lee, P.; Han, S.; Hong, S.; Yeo, J.; Lee, H.; Ko, S.H. Recent Progress in Silver Nanowire Based Flexible/Wearable Optoelectronics. J. Mater. Chem. C 2018, 6, 7445–7461. [Google Scholar] [CrossRef]
- Park, K.; Jeong, C.K.; Ryu, J.; Hwang, G.; Lee, K.J. Flexible and Large-area Nanocomposite Generators Based on Lead Zirconate Titanate Particles and Carbon Nanotubes. Adv. Energy Mater. 2013, 3, 1539–1544. [Google Scholar] [CrossRef]
- Liu, C.-H.; Yu, X. Silver Nanowire-Based Transparent, Flexible, and Conductive Thin Film. Nanoscale Res. Lett. 2011, 6, 1–8. [Google Scholar] [CrossRef]
- Maddipatla, D. Development of Fully Printed and Flexible Strain, Pressure and Electrochemical Sensors. Master’s Thesis, Western Michigan University, Kalamazoo, MI, USA, 2016. [Google Scholar]
- Maddipatla, D.; Narakathu, B.B.; Atashbar, M. Recent Progress in Manufacturing Techniques of Printed and Flexible Sensors: A Review. Biosensors 2020, 10, 199. [Google Scholar] [CrossRef] [PubMed]
- Willfahrt, A. Screen Printing Technology for Energy Devices; Linköping University Electronic Press: Linköping, Sweden, 2019; ISBN 9789176852743. [Google Scholar]
- Biegeleisen, J.I. The Complete Book of Silk Screen Printing Production; Courier Corporation: North Chelmsford, MA, USA, 2012; ISBN 0486137554. [Google Scholar]
- Suganuma, K. Introduction to Printed Electronics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2014; Volume 74, ISBN 146149625X. [Google Scholar]
- Zang, J.; Chen, J.; Chen, Z.; Li, Y.; Zhang, J.; Song, T.; Sun, B. Printed Flexible Thermoelectric Materials and Devices. J. Mater. Chem. A 2021, 9, 19439–19464. [Google Scholar] [CrossRef]
- Izdebska, J.; Thomas, S. Printing on Polymers: Fundamentals and Applications; William Andrew: Norwich, NY, USA, 2015; ISBN 0323375006. [Google Scholar]
- Zhong, Z.W.; Ee, J.H.; Chen, S.H.; Shan, X.C. Parametric Investigation of Flexographic Printing Processes for R2R Printed Electronics. Mater. Manuf. Process. 2020, 35, 564–571. [Google Scholar] [CrossRef]
- Gordon, S.E.; Dorfman, J.R.; Kirk, D.; Adams, K. Advances in Conductive Inks across Multiple Applications and Deposition Platforms. In Proceedings of the IPC APEX EXPO 2012, Arlington, VA, USA, 9–13 October 2012. [Google Scholar]
- Shrestha, S.; Yerramilli, R.; Karmakar, N.C. Microwave Performance of Flexo-Printed Chipless RFID Tags. Flex. Print. Electron. 2019, 4, 45003. [Google Scholar] [CrossRef]
- Bohan, M.F.J.; Townsend, P.; Hamblyn, S.M.; Claypole, T.C.; Gethin, D.T. Evaluation of Pressures in Flexographic Printing. Proc. TAGA 2003, 1998, 311–321. [Google Scholar]
- Leach, R. The Printing Ink Manual; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 9401170975. [Google Scholar]
- Rahman, Z.; Barakh Ali, S.F.; Ozkan, T.; Charoo, N.A.; Reddy, I.K.; Khan, M.A. Additive Manufacturing with 3D Printing: Progress from Bench to Bedside. AAPS J. 2018, 20, 1–14. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Sathish, T.; Vijayakumar, M.D.; Ayyangar, A.K. Design and Fabrication of Industrial Components Using 3D Printing. Mater. Today Proc. 2018, 5, 14489–14498. [Google Scholar] [CrossRef]
- Surange, V.G.; Gharat, P. V 3D Printing Process Using Fused Deposition Modelling (FDM). Int. Res. J. Eng. Technol. 2016, 3, 1403–1406. [Google Scholar]
- Chen, J.; Liu, X.; Tian, Y.; Zhu, W.; Yan, C.; Shi, Y.; Kong, L.B.; Qi, H.J.; Zhou, K. 3D-Printed Anisotropic Polymer Materials for Functional Applications. Adv. Mater. 2022, 34, 2102877. [Google Scholar] [CrossRef]
- Rashid, A. Additive Manufacturing Technologies; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 9781441911193. [Google Scholar]
- Clark, D.A. Major Trends in Gravure Printed Electronics; California Polytechnic State University: San Luis Obispo, CA, USA, 2010. [Google Scholar]
- Pudas, M.; Halonen, N.; Granat, P.; Vähäkangas, J. Gravure Printing of Conductive Particulate Polymer Inks on Flexible Substrates. Prog. Org. Coat. 2005, 54, 310–316. [Google Scholar] [CrossRef]
- Subramanian, V.; Chang, J.B.; de la Fuente Vornbrock, A.; Huang, D.C.; Jagannathan, L.; Liao, F.; Mattis, B.; Molesa, S.; Redinger, D.R.; Soltman, D. Printed Electronics for Low-Cost Electronic Systems: Technology Status and Application Development. In Proceedings of the ESSCIRC 2008—34th European Solid-State Circuits Conference, Edinburgh, UK, 15–19 September 2008; pp. 17–24. [Google Scholar]
- Baca, A.J.; Meitl, M.A.; Ko, H.C.; Mack, S.; Kim, H.; Dong, J.; Ferreira, P.M.; Rogers, J.A. Printable Single-crystal Silicon Micro/Nanoscale Ribbons, Platelets and Bars Generated from Bulk Wafers. Adv. Funct. Mater. 2007, 17, 3051–3062. [Google Scholar] [CrossRef]
- Kipphan, H. Handbook of Print Media: Technologies and Production Methods; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001; ISBN 3540673261. [Google Scholar]
- Maleki, H.; Bertola, V. Recent Advances and Prospects of Inkjet Printing in Heterogeneous Catalysis. Catal. Sci. Technol. 2020, 10, 3140–3159. [Google Scholar] [CrossRef]
- Divya, P.; Arulkumar, S.; Parthiban, S.; Goswami, A.; Ahamad, T.; Gawande, M.B. Rapid and Scalable Wire-Bar Strategy for Coating of TiO2 Thin-Films: Effect of Post-Annealing Temperatures on Structures and Catalytic Dye-Degradation. Molecules 2020, 25, 1683. [Google Scholar] [CrossRef]
- Qi, X.; Lim, S. A Screen-Printed Metal Hybrid Composite for Wireless Wind Sensing. Nanomaterials 2022, 12, 972. [Google Scholar] [CrossRef]
- Naghieh, S.; Sarker, M.D.; Sharma, N.K.; Barhoumi, Z.; Chen, X. Printability of 3D Printed Hydrogel Scaffolds: Influence of Hydrogel Composition and Printing Parameters. Appl. Sci. 2019, 10, 292. [Google Scholar] [CrossRef]
- Nguyen, H.A.D.; Lee, J.; Kim, C.H.; Shin, K.H.; Lee, D. An Approach for Controlling Printed Line-Width in High Resolution Roll-to-Roll Gravure Printing. J. Micromech. Microeng. 2013, 23, 095010. [Google Scholar] [CrossRef]
- Li, C.; Huang, W.; Gao, L.; Wang, H.; Hu, L.; Chen, T.; Zhang, H. Recent Advances in Solution-Processed Photodetectors Based on Inorganic and Hybrid Photo-Active Materials. Nanoscale 2020, 12, 2201–2227. [Google Scholar] [CrossRef]
- Li, Z.; Chang, S.; Khuje, S.; Ren, S. Recent Advancement of Emerging Nano Copper-Based Printable Flexible Hybrid Electronics. ACS Nano 2021, 15, 6211–6232. [Google Scholar] [CrossRef]
- Wang, J.; Jiu, J.; Nogi, M.; Sugahara, T.; Nagao, S.; Koga, H.; He, P.; Suganuma, K. A Highly Sensitive and Flexible Pressure Sensor with Electrodes and Elastomeric Interlayer Containing Silver Nanowires. Nanoscale 2015, 7, 2926–2932. [Google Scholar] [CrossRef]
- Huang, H.J.; Ning, X.; Zhou, M.B.; Sun, T.; Wu, X.; Zhang, X.P. A Three-Dimensional Printable Liquid Metal-Like Ag Nanoparticle Ink for Making a Super-Stretchable and Highly Cyclic Durable Strain Sensor. ACS Appl. Mater. Interfaces 2021, 13, 18021–18032. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Zhu, Y. Wearable Multifunctional Sensors Using Printed Stretchable Conductors Made of Silver Nanowires. Nanoscale 2014, 6, 2345–2352. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Yao, W.; Zeng, P.; Li, X.; Wang, H.; Liu, L.; Feng, Y.; Luo, C.; Wu, W. All-Printed, Low-Cost, Tunable Sensing Range Strain Sensors Based on Ag Nanodendrite Conductive Inks for Wearable Electronics. J. Mater. Chem. C 2019, 7, 809–818. [Google Scholar] [CrossRef]
- Qi, X.; Lv, H.; Wang, Y.; Ye, Y.; Wang, P.; Yin, A.; Luo, J.; Liu, H.; Ren, Z.; Liu, J.; et al. Synthesis of Ag Nanowires with High Aspect Ratio for Highly Sensitive Flexible Strain Sensor. ChemNanoMat 2024, 10, 202400264. [Google Scholar] [CrossRef]
- Park, J.; Nam, D.; Park, S.; Lee, D. Fabrication of Flexible Strain Sensors via Roll-to-Roll Gravure Printing of Silver Ink. Smart Mater. Struct. 2018, 27, 085014. [Google Scholar] [CrossRef]
- Li, W.; Guo, J.; Fan, D. 3D Graphite–Polymer Flexible Strain Sensors with Ultrasensitivity and Durability for Real-Time Human Vital Sign Monitoring and Musical Instrument Education. Adv. Mater. Technol. 2017, 2, 1–9. [Google Scholar] [CrossRef]
- Casiraghi, C.; Macucci, M.; Parvez, K.; Worsley, R.; Shin, Y.; Bronte, F.; Borri, C.; Paggi, M.; Fiori, G. Inkjet Printed 2D-Crystal Based Strain Gauges on Paper. Carbon N. Y. 2018, 129, 462–467. [Google Scholar] [CrossRef]
- Tseng, S.F.; Liao, C.H.; Hsiao, W.T.; Chang, T.L. Ultrafast Laser Direct Writing of Screen-Printed Graphene-Based Strain Electrodes for Sensing Glass Deformation. Ceram. Int. 2021, 47, 29099–29108. [Google Scholar] [CrossRef]
- Tao, L.Q.; Zhang, K.N.; Tian, H.; Liu, Y.; Wang, D.Y.; Chen, Y.Q.; Yang, Y.; Ren, T.L. Graphene-Paper Pressure Sensor for Detecting Human Motions. ACS Nano 2017, 11, 8790–8795. [Google Scholar] [CrossRef]
- Lee, S.W.; Park, J.J.; Park, B.H.; Mun, S.C.; Park, Y.T.; Liao, K.; Seo, T.S.; Hyun, W.J.; Park, O.O. Enhanced Sensitivity of Patterned Graphene Strain Sensors Used for Monitoring Subtle Human Body Motions. ACS Appl. Mater. Interfaces 2017, 9, 11176–11183. [Google Scholar] [CrossRef]
- Yun, Y.J.; Ju, J.; Lee, J.H.; Moon, S.H.; Park, S.J.; Kim, Y.H.; Hong, W.G.; Ha, D.H.; Jang, H.; Lee, G.H.; et al. Highly Elastic Graphene-Based Electronics Toward Electronic Skin. Adv. Funct. Mater. 2017, 27, 1–10. [Google Scholar] [CrossRef]
- Das Mahapatra, S.; Mohapatra, P.C.; Aria, A.I.; Christie, G.; Mishra, Y.K.; Hofmann, S.; Thakur, V.K. Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials. Adv. Sci. 2021, 8, 2100864. [Google Scholar] [CrossRef] [PubMed]
- Barmpakos, D.; Tsamis, C.; Kaltsas, G. Multi-Parameter Paper Sensor Fabricated by Inkjet-Printed Silver Nanoparticle Ink and PEDOT:PSS. Microelectron. Eng. 2020, 225, 111266. [Google Scholar] [CrossRef]
- Rajala, S.; Schouten, M.; Krijnen, G.; Tuukkanen, S. High Bending-Mode Sensitivity of Printed Piezoelectric Poly(Vinylidenefluoride- Co-Trifluoroethylene) Sensors. ACS Omega 2018, 3, 8067–8073. [Google Scholar] [CrossRef]
- Khan, S.; Dahiya, R.; Tinku, S.; Lorenzelli, L. Conformable Tactile Sensing Using Screen Printed P(VDF-TrFE) and MWCNT-PDMS Composites. Proc. IEEE Sens. 2014, 2014, 862–865. [Google Scholar] [CrossRef]
- Xiao, Y.; Jiang, S.; Li, Y.; Zhang, W. Highly Sensitive Printed Crack-Enhanced Strain Sensor as Dual-Directional Bending Detector. Smart Mater. Struct. 2020, 29, 45023. [Google Scholar] [CrossRef]
- Emon, M.O.F.; Choi, J.W. Flexible Piezoresistive Sensors Embedded in 3D Printed Tires. Sensors 2017, 17, 656. [Google Scholar] [CrossRef]
- Feng, J.; Tian, Y.; Wang, S.; Xiao, M.; Hui, Z.; Hang, C.; Duley, W.W.; Zhou, Y.N. Femtosecond Laser Irradiation Induced Heterojunctions between Carbon Nanofibers and Silver Nanowires for a Flexible Strain Sensor. J. Mater. Sci. Technol. 2021, 84, 139–146. [Google Scholar] [CrossRef]
- Han, J.T.; Jang, J.I.; Cho, J.Y.; Hwang, J.Y.; Woo, J.S.; Jeong, H.J.; Jeong, S.Y.; Seo, S.H.; Lee, G.W. Synthesis of Nanobelt-like 1-Dimensional Silver/Nanocarbon Hybrid Materials for Flexible and Wearable Electroncs. Sci. Rep. 2017, 7, 4931. [Google Scholar] [CrossRef]
- Lee, J.W.; Cho, J.Y.; Kim, M.J.; Kim, J.H.; Park, J.H.; Jeong, S.Y.; Seo, S.H.; Lee, G.W.; Jeong, H.J.; Han, J.T. Synthesis of Silver Nanoparticles Embedded with Single-Walled Carbon Nanotubes for Printable Elastic Electrodes and Sensors with High Stability. Sci. Rep. 2021, 11, 5140. [Google Scholar] [CrossRef]
- Lin, L.; Choi, Y.; Chen, T.; Kim, H.; Lee, K.S.; Kang, J.; Lyu, L.; Gao, J.; Piao, Y. Superhydrophobic and Wearable TPU Based Nanofiber Strain Sensor with Outstanding Sensitivity for High-Quality Body Motion Monitoring. Chem. Eng. J. 2021, 419, 129513. [Google Scholar] [CrossRef]
- Min, S.H.; Lee, G.Y.; Ahn, S.H. Direct Printing of Highly Sensitive, Stretchable, and Durable Strain Sensor Based on Silver Nanoparticles/Multi-Walled Carbon Nanotubes Composites. Compos. Part B Eng. 2019, 161, 395–401. [Google Scholar] [CrossRef]
- Qi, X.; Ha, H.; Hwang, B.; Lim, S. Printability of the Screen-Printed Strain Sensor with Carbon Black/Silver Paste for Sensitive Wearable Electronics. Appl. Sci. 2020, 10, 6983. [Google Scholar] [CrossRef]
- Zhao, S.Q.; Zheng, P.X.; Cong, H.L.; Wan, A.L. Facile Fabrication of Flexible Strain Sensors with AgNPs-Decorated CNTs Based on Nylon/PU Fabrics through Polydopamine Templates. Appl. Surf. Sci. 2021, 558, 149931. [Google Scholar] [CrossRef]
- Dai, J.; Ogbeide, O.; Macadam, N.; Sun, Q.; Yu, W.; Li, Y.; Su, B.L.; Hasan, T.; Huang, X.; Huang, W. Printed Gas Sensors. Chem. Soc. Rev. 2020, 49, 1756–1789. [Google Scholar] [CrossRef]
- Li, H.; Liang, J. Recent Development of Printed Micro-Supercapacitors: Printable Materials, Printing Technologies, and Perspectives. Adv. Mater. 2020, 32, e1805864. [Google Scholar] [CrossRef]
- Kamyshny, A.; Magdassi, S. Conductive Nanomaterials for Printed Electronics. Small 2014, 10, 3515–3535. [Google Scholar] [CrossRef]
- Saidina, D.S.; Eawwiboonthanakit, N.; Mariatti, M.; Fontana, S.; Hérold, C. Recent Development of Graphene-Based Ink and Other Conductive Material-Based Inks for Flexible Electronics. J. Electron. Mater. 2019, 48, 3428–3450. [Google Scholar] [CrossRef]
- Raut, N.C.; Al-Shamery, K. Inkjet Printing Metals on Flexible Materials for Plastic and Paper Electronics. J. Mater. Chem. C 2018, 6, 1618–1641. [Google Scholar] [CrossRef]
- Zheng, Y.; He, Z.-Z.; Yang, J.; Liu, J. Personal Electronics Printing via Tapping Mode Composite Liquid Metal Ink Delivery and Adhesion Mechanism. Sci. Rep. 2014, 4, 4588. [Google Scholar] [CrossRef]
- Lim, J.A.; Lee, W.H.; Lee, H.S.; Lee, J.H.; Park, Y.D.; Cho, K. Self-Organization of Ink-Jet-Printed Triisopropylsilylethynyl Pentacene via Evaporation-Induced Flows in a Drying Droplet. Adv. Funct. Mater. 2008, 18, 229–234. [Google Scholar] [CrossRef]
- An, S.; Lee, M.W.; Kim, N.Y.; Lee, C.; Al-Deyab, S.S.; James, S.C.; Yoon, S.S. Effect of Viscosity, Electrical Conductivity, and Surface Tension on Direct-Current-Pulsed Drop-on-Demand Electrohydrodynamic Printing Frequency. Appl. Phys. Lett. 2014, 105, 214102. [Google Scholar] [CrossRef]
- Feng, J.; Su, B.L.; Xia, H.; Zhao, S.; Gao, C.; Wang, L.; Ogbeide, O.; Feng, J.; Hasan, T. Printed Aerogels: Chemistry, Processing, and Applications. Chem. Soc. Rev. 2021, 50, 3842–3888. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z. Printed Electronics: Materials, Technologies and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2016; ISBN 1118920929. [Google Scholar]
- Hoeng, F.; Denneulin, A.; Bras, J. Use of Nanocellulose in Printed Electronics: A Review. Nanoscale 2016, 8, 13131–13154. [Google Scholar] [CrossRef]
- Caironi, M.; Gili, E.; Sakanoue, T.; Cheng, X.; Sirringhaus, H. High Yield, Single Droplet Electrode Arrays for Nanoscale Printed Electronics. ACS Nano 2010, 4, 1451–1456. [Google Scholar] [CrossRef]
- Lessing, J.; Glavan, A.C.; Walker, S.B.; Keplinger, C.; Lewis, J.A.; Whitesides, G.M. Inkjet Printing of Conductive Inks with High Lateral Resolution on Omniphobic “Rf Paper” for Paper-based Electronics and MEMS. Adv. Mater. 2014, 26, 4677–4682. [Google Scholar] [CrossRef]
- Maddipatla, D.; Narakathu, B.B.; Ali, M.M.; Chlaihawi, A.A.; Atashbar, M.Z. Development of a Novel Carbon Nanotube Based Printed and Flexible Pressure Sensor. In Proceedings of the 2017 IEEE Sensors Applications Symposium (SAS), Glassboro, NJ, USA, 13–15 March 2017; pp. 1–4. [Google Scholar]
- Sondhi, K.; Hwangbo, S.; Yoon, Y.-K.; Nishida, T.; Fan, Z.H. Airbrushing and Surface Modification for Fabricating Flexible Electronics on Polydimethylsiloxane. J. Micromech. Microeng. 2018, 28, 125014. [Google Scholar] [CrossRef]
- Li, C.-Y.; Liao, Y.-C. Adhesive Stretchable Printed Conductive Thin Film Patterns on PDMS Surface with an Atmospheric Plasma Treatment. ACS Appl. Mater. Interfaces 2016, 8, 11868–11874. [Google Scholar] [CrossRef]
- Agate, S.; Joyce, M.; Lucia, L.; Pal, L. Cellulose and Nanocellulose-Based Flexible-Hybrid Printed Electronics and Conductive Composites–A Review. Carbohydr. Polym. 2018, 198, 249–260. [Google Scholar] [CrossRef]
- Fernandes, I.J.; Aroche, A.F.; Schuck, A.; Lamberty, P.; Peter, C.R.; Hasenkamp, W.; Rocha, T.L.A.C. Silver Nanoparticle Conductive Inks: Synthesis, Characterization, and Fabrication of Inkjet-Printed Flexible Electrodes. Sci. Rep. 2020, 10, 8878. [Google Scholar] [CrossRef]
- Markgraf, W.; Horn, R.; Peth, S. An Approach to Rheometry in Soil Mechanics—Structural Changes in Bentonite, Clayey and Silty Soils. Soil Tillage Res. 2006, 91, 1–14. [Google Scholar] [CrossRef]
- Rodriguez-Villarreal, A.I.; Taña, L.O.; Cid, J.; Hernandez-Machado, A.; Alarcon, T.; Miribel-Catala, P.; Colomer-Farrarons, J. An Integrated Detection Method for Flow Viscosity Measurements in Microdevices. IEEE Trans. Biomed. Eng. 2020, 68, 2049–2057. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Sudau, K.; Ahn, K.H.; Lee, S.J.; Willenbacher, N. Optimization of Experimental Parameters to Suppress Nozzle Clogging in Inkjet Printing. Ind. Eng. Chem. Res. 2012, 51, 13195–13204. [Google Scholar] [CrossRef]
- Li, D.; Lai, W.; Zhang, Y.; Huang, W. Printable Transparent Conductive Films for Flexible Electronics. Adv. Mater. 2018, 30, 1704738. [Google Scholar] [CrossRef]
- Öhlund, T. Metal Films for Printed Electronics: Ink-Substrate Interactions and Sintering. Ph.D. Thesis, Mid Sweden University, Sundsvall, Sweden, 2014. [Google Scholar]
- Hood, D.; Musa, O. Compositions Comprising a Reactive Monomer and Uses Thereof. US9512325B2, 6 December 2016. [Google Scholar]
- Mezger, T. The Rheology Handbook. In The Rheology Handbook; Vincentz Network: Hanover, Germany, 2020; ISBN 3748603703. [Google Scholar]
- Barnes, H.A. A Handbook of Elementary Rheology; University of Wales, Institute of Non-Newtonian Fluid Mechanics Aberystwyth: Cardiff, UK, 2000; Volume 1. [Google Scholar]
- Chiu, S.-W.; Clark, M.; Balaji, V.; Subramaniam, S.; Scott, H.L.; Jakobsson, E. Incorporation of Surface Tension into Molecular Dynamics Simulation of an Interface: A Fluid Phase Lipid Bilayer Membrane. Biophys. J. 1995, 69, 1230–1245. [Google Scholar] [CrossRef]
- Myers, D. Surfaces, Interfaces, and Colloids; Wiley: New York, NY, USA, 1999; Volume 415. [Google Scholar]
- Massey, B.S.; Ward-Smith, J. Mechanics of Fluids; CRC Press: Boca Raton, FL, USA, 2018; ISBN 1315272547. [Google Scholar]
- TELETZKE, G.F.; Ted Davis, H.; Scriven, L.E. How Liquids Spread on Solids. Chem. Eng. Commun. 1987, 55, 41–82. [Google Scholar] [CrossRef]
- Moules, C.A. Surface Effects Including Interfacial Tension, Wettability, Contact Angles and Dispersibility. In Physico-Chemical Aspects of Food Processing; Springer: Berlin/Heidelberg, Germany, 1995; pp. 167–192. [Google Scholar]
- Meng, L.-Y.; Park, S.-J. Superhydrophobic Carbon-Based Materials: A Review of Synthesis, Structure, and Applications. Carbon Lett. 2014, 15, 89–104. [Google Scholar] [CrossRef]
- Wu, W.; Nancollas, G.H. Determination of Interfacial Tension from Crystallization and Dissolution Data: A Comparison with Other Methods. Adv. Colloid Interface Sci. 1999, 79, 229–279. [Google Scholar] [CrossRef]
- Bayer, I.S.; Megaridis, C.M. Contact Angle Dynamics in Droplets Impacting on Flat Surfaces with Different Wetting Characteristics. J. Fluid Mech. 2006, 558, 415–449. [Google Scholar] [CrossRef]
- Kubiak, K.J.; Wilson, M.C.T.; Mathia, T.G.; Carval, P. Wettability versus Roughness of Engineering Surfaces. Wear 2011, 271, 523–528. [Google Scholar] [CrossRef]
- Myshkin, N.; Kovalev, A. Adhesion and Surface Forces in Polymer Tribology—A Review. Friction 2018, 6, 143–155. [Google Scholar] [CrossRef]
- Marchand, A.; Weijs, J.H.; Snoeijer, J.H.; Andreotti, B. Why Is Surface Tension a Force Parallel to the Interface? Am. J. Phys. 2011, 79, 999–1008. [Google Scholar] [CrossRef]
- Rios, P.F.; Dodiuk, H.; Kenig, S.; McCarthy, S.; Dotan, A. The Effect of Polymer Surface on the Wetting and Adhesion of Liquid Systems. J. Adhes. Sci. Technol. 2007, 21, 227–241. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Li, Y.; Wang, P. Textile-Based Flexible Pressure Sensors: A Review. Polym. Rev. 2022, 62, 65–94. [Google Scholar] [CrossRef]
- Ray, T.R.; Choi, J.; Bandodkar, A.J.; Krishnan, S.; Gutruf, P.; Tian, L.; Ghaffari, R.; Rogers, J.A. Bio-Integrated Wearable Systems: A Comprehensive Review. Chem. Rev. 2019, 119, 5461–5533. [Google Scholar] [CrossRef]
- Amjadi, M.; Kyung, K.U.; Park, I.; Sitti, M. Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Adv. Funct. Mater. 2016, 26, 1678–1698. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Zhao, W.; Zhang, M.; Qin, H.; Xie, Y. Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features. Sensors 2018, 18, 645. [Google Scholar] [CrossRef]
- Wu, W. Stretchable Electronics: Functional Materials, Fabrication Strategies and Applications. Sci. Technol. Adv. Mater. 2019, 20, 187–224. [Google Scholar] [CrossRef]
- Li, Z.; Huang, J.; Wang, J. Self-Supported Materials for Flexible/Stretchable Sensors. In Self-Standing Substrates; Springer: Berlin/Heidelberg, Germany, 2020; pp. 269–296. [Google Scholar]
- Li, S.; Liu, G.; Li, R.; Li, Q.; Zhao, Y.; Huang, M.; Zhang, M.; Yin, S.; Zhou, Y.; Tang, H. Contact-Resistance-Free Stretchable Strain Sensors with High Repeatability and Linearity. ACS Nano 2021, 16, 541–553. [Google Scholar] [CrossRef]
- Zhao, S.; Li, J.; Cao, D.; Zhang, G.; Li, J.; Li, K.; Yang, Y.; Wang, W.; Jin, Y.; Sun, R. Recent Advancements in Flexible and Stretchable Electrodes for Electromechanical Sensors: Strategies, Materials, and Features. ACS Appl. Mater. Interfaces 2017, 9, 12147–12164. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Harada, S.; Yamamoto, D.; Honda, W.; Arie, T.; Akita, S.; Takei, K. Printed Multifunctional Flexible Device with an Integrated Motion Sensor for Health Care Monitoring. Sci. Adv. 2016, 2, e1601473. [Google Scholar] [CrossRef] [PubMed]
- Honda, W.; Harada, S.; Arie, T.; Akita, S.; Takei, K. Wearable, Human-interactive, Health-monitoring, Wireless Devices Fabricated by Macroscale Printing Techniques. Adv. Funct. Mater. 2014, 24, 3299–3304. [Google Scholar] [CrossRef]
- Khan, S.; Ali, S.; Bermak, A. Recent Developments in Printing Flexible and Wearable Sensing Electronics for Healthcare Applications. Sensors 2019, 19, 1230. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Mondal, T.; Deen, M.J. Wearable Sensors for Remote Health Monitoring. Sensors 2017, 17, 130. [Google Scholar] [CrossRef]
- Mourtzis, D.; Angelopoulos, J.; Panopoulos, N. The Future of the Human–Machine Interface (HMI) in Society 5.0. Futur. Internet 2023, 15, 162. [Google Scholar] [CrossRef]
- Xu, C.; Chen, J.; Zhu, Z.; Liu, M.; Lan, R.; Chen, X.; Tang, W.; Zhang, Y.; Li, H. Flexible Pressure Sensors in Human–Machine Interface Applications. Small 2024, 20, 2306655. [Google Scholar] [CrossRef]
- Ardanza, A.; Moreno, A.; Segura, Á.; de la Cruz, M.; Aguinaga, D. Sustainable and Flexible Industrial Human Machine Interfaces to Support Adaptable Applications in the Industry 4.0 Paradigm. Int. J. Prod. Res. 2019, 57, 4045–4059. [Google Scholar] [CrossRef]
- Yin, R.; Wang, D.; Zhao, S.; Lou, Z.; Shen, G. Wearable Sensors-enabled Human–Machine Interaction Systems: From Design to Application. Adv. Funct. Mater. 2021, 31, 2008936. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, G.Y.; Marindra, A.M.J.; Sunny, A.I.; Zhao, A.B. A Review of Passive RFID Tag Antenna-Based Sensors and Systems for Structural Health Monitoring Applications. Sensors 2017, 17, 265. [Google Scholar] [CrossRef]
- Lynch, J.P. A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring. Shock Vib. Dig. 2006, 38, 91–128. [Google Scholar] [CrossRef]
- Guo, Y.; Wei, X.; Gao, S.; Yue, W.; Li, Y.; Shen, G. Recent Advances in Carbon Material-based Multifunctional Sensors and Their Applications in Electronic Skin Systems. Adv. Funct. Mater. 2021, 31, 2104288. [Google Scholar] [CrossRef]
- Dahiya, R. E-Skin: From Humanoids to Humans [Point of View]. Proc. IEEE 2019, 107, 247–252. [Google Scholar] [CrossRef]
- Almansoori, M.T.; Li, X.; Zheng, L. A Brief Review on E-Skin and Its Multifunctional Sensing Applications. Curr. Smart Mater. 2019, 4, 3–14. [Google Scholar] [CrossRef]
- Zhu, J.; Cho, M.; Li, Y.; He, T.; Ahn, J.; Park, J.; Ren, T.-L.; Lee, C.; Park, I. Machine Learning-Enabled Textile-Based Graphene Gas Sensing with Energy Harvesting-Assisted IoT Application. Nano Energy 2021, 86, 106035. [Google Scholar] [CrossRef]
- Ashima, R.; Haleem, A.; Bahl, S.; Javaid, M.; Mahla, S.K.; Singh, S. Automation and Manufacturing of Smart Materials in Additive Manufacturing Technologies Using Internet of Things towards the Adoption of Industry 4.0. Mater. Today Proc. 2021, 45, 5081–5088. [Google Scholar] [CrossRef]
- Fernández-Caramés, T.M.; Fraga-Lamas, P. Towards the Internet of Smart Clothing: A Review on IoT Wearables and Garments for Creating Intelligent Connected e-Textiles. Electronics 2018, 7, 405. [Google Scholar] [CrossRef]
- Moinudeen, G.K.; Ahmad, F.; Kumar, D.; Al-Douri, Y.; Ahmad, S. IoT Applications in Future Foreseen Guided by Engineered Nanomaterials and Printed Intelligence Technologies a Technology Review. Int. J. Internet Things 2017, 6, 106–148. [Google Scholar]
- Kathirvelan, J. Recent Developments of Inkjet-Printed Flexible Sensing Electronics for Wearable Device Applications: A Review. Sens. Rev. 2021, 41, 46–56. [Google Scholar] [CrossRef]
- Htwe, Y.Z.N.; Mariatti, M. Printed Graphene and Hybrid Conductive Inks for Flexible, Stretchable, and Wearable Electronics: Progress, Opportunities, and Challenges. J. Sci. Adv. Mater. Devices 2022, 7, 100435. [Google Scholar] [CrossRef]
- Barmpakos, D.; Kaltsas, G. A Review on Humidity, Temperature and Strain Printed Sensors—Current Trends and Future Perspectives. Sensors 2021, 21, 739. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, H.; Han, W.; Lin, H.; Li, R.; Zhu, J.; Huang, W. 3D Printed Flexible Strain Sensors: From Printing to Devices and Signals. Adv. Mater. 2021, 33, 2004782. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Lorenzelli, L.; Dahiya, R.S. Technologies for Printing Sensors and Electronics over Large Flexible Substrates: A Review. IEEE Sens. J. 2014, 15, 3164–3185. [Google Scholar] [CrossRef]
- Chen, H.; Zhuo, F.; Zhou, J.; Liu, Y.; Zhang, J.; Dong, S.; Liu, X.; Elmarakbi, A.; Duan, H.; Fu, Y. Advances in Graphene-Based Flexible and Wearable Strain Sensors. Chem. Eng. J. 2023, 464, 142576. [Google Scholar] [CrossRef]
- Hu, Y.; Zhao, T.; Zhu, P.; Zhang, Y.; Liang, X.; Sun, R.; Wong, C.-P. A Low-Cost, Printable, and Stretchable Strain Sensor Based on Highly Conductive Elastic Composites with Tunable Sensitivity for Human Motion Monitoring. Nano Res. 2018, 11, 1938–1955. [Google Scholar] [CrossRef]
- Heo, J.S.; Hossain, M.F.; Kim, I. Challenges in Design and Fabrication of Flexible/Stretchable Carbon-and Textile-Based Wearable Sensors for Health Monitoring: A Critical Review. Sensors 2020, 20, 3927. [Google Scholar] [CrossRef]
- Liu, X.; Tang, C.; Du, X.; Xiong, S.; Xi, S.; Liu, Y.; Shen, X.; Zheng, Q.; Wang, Z.; Wu, Y.; et al. A Highly Sensitive Graphene Woven Fabric Strain Sensor for Wearable Wireless Musical Instrument. Mater. Horiz 2017, 4, 477–486. [Google Scholar] [CrossRef]
- Liu, C.; Huang, N.; Xu, F.; Tong, J.; Chen, Z.; Gui, X.; Fu, Y.; Lao, C. 3D Printing Technologies for Flexible Tactile Sensors toward Wearable Electronics and Electronic Skin. Materials 2018, 11, 629. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, F.; Medarametla, S.P.; Li, H.; Zhou, C.; Lin, D. 3D Printing of Graphene Aerogels. Small 2016, 12, 1702–1708. [Google Scholar] [CrossRef]
Material (Abbreviation) | Tensile Strength (MPa) | Young’s Modulus (MPa) | Elongation at Break (%) | Density (g/cm3) |
---|---|---|---|---|
Polyimide (PI) | 100–150 | 2500–4000 | 5–10 | 1.38–1.43 |
Polyethylene Terephthalate (PET) | 50–70 | 2800–4000 | 50–300 | 1.38–1.40 |
Polyurethane (PU) | 20–60 | 10–1000 | 100–800 | 1.0–1.2 |
Polydimethylsiloxane (PDMS) | 4–10 | 0.5–10 | 100–800 | 1.0–1.1 |
Ecoflex | 2–5 | 0.01–0.1 | 400–1000 | 1.0–1.1 |
Kapton (a type of PI film) | 110–140 | 3000–3500 | 5–8 | 1.42 |
Nylon (Polyamide, PA) | 40–90 | 1500–3000 | 10–300 | 1.14–1.15 |
Polypropylene (PP) | 20–35 | 1000–1500 | 200–800 | 0.89–0.91 |
Polyvinyl Chloride (PVC) | 40–60 | 2500–4000 | 2–40 | 1.3–1.5 |
Silk Fabric | 20–40 (depending on type) | 500–1000 | 15–30 | 1.3–1.4 |
Cotton Fabric | 2–5 (per yarn strength) | 100–300 | 3–10 | 1.5–1.6 |
Paper | 10–30 (tensile strength of paper sheet) | 100–500 | 1–5 | 0.6–1.2 |
Lycra (Spandex) | 1–5 (initial modulus) | 0.1–1 | 500–800 | 1.2–1.3 |
Polyester Fabric | 40–70 (yarn strength) | 1000–2000 | 15–30 | 1.3–1.4 |
Rubberized Fabric | 10–30 (depending on rubber content) | 50–200 | 100–500 | 1.1–1.3 |
Polyethylene (PE) | 7–40 | 400–1500 | 10–1000 | 0.91–0.96 |
Polystyrene (PS) | 35–50 | 2500–3500 | 1–3 | 1.04–1.07 |
Acrylonitrile Butadiene Styrene (ABS) | 30–50 | 1800–2800 | 10–40 | 1.04–1.06 |
TPU (Thermoplastic Polyurethane) | 20–60 | 10–1500 | 100–800 | 1.1–1.2 |
Material (Abbreviation) 000 | Surface Roughness (nm) | Dielectric Constant | Thermal Expansion Coefficient (ppm/°C) | Electrical Resistivity (Ω·cm) | Optical Transmittance (%) | Chemical Stability |
---|---|---|---|---|---|---|
Polyimide (PI) | 1–10 | 3–4 | 20–50 | >1015 | 70–90 (for thin films) | Excellent against high temperature, most acids, alkalis, and organic solvents |
Polyethylene Terephthalate (PET) | 2–15 | 3–3.5 | 60–180 | >1014 | 85–92 | Good against many chemicals but attacked by strong alkalis and some hot solvents |
Polyurethane (PU) | 5–20 | 2.5–3.5 | 100–300 | >1013 | 80–90 (clear grades) | Moderate against oils and abrasion, can be degraded by some chemicals |
Polydimethylsiloxane (PDMS) | 0.5–5 | 2.5–3 | 200–300 | >1015 | 90–95 | Good against water, oxygen, and many organic solvents |
Ecoflex | 1–10 | 2–3 | 300–500 | >1014 | 80–90 (for thin films) | Resistant to many common chemicals, good flexibility |
Nylon (Polyamide, PA) | 3–15 | 3–4.5 | 70–120 | >1013 | 80–90 (for some grades) | Good against oils, fuels, and abrasion, affected by strong acids and bases |
Polypropylene (PP) | 2–10 | 2.2–2.6 | 100–200 | >1015 | 80–90 (for clear grades) | Resistant to most organic solvents and many chemicals |
Polyvinyl Chloride (PVC) | 3–15 | 3–4 | 50–100 | >1013 | 75–85 (for clear grades) | Resistant to many acids, alkalis, and salts, softened by some solvents |
Silk Fabric | 5–20 (for Bombyx mori silk) | 2–3 | 80–150 | >10¹³ | 70–80 (for thin films) | Moderate against common chemicals, sensitive to strong alkalis |
Cotton Fabric | 10–30 (per yarn) | 1.5–2.5 | 50–100 | >1012 | 50–70 (for thin layers) | Susceptible to hydrolysis by strong acids and alkalis |
Paper | 10–50 (for common printing paper) | 1.8–2.5 | 30–80 | >1012 | 20–40 (for white paper) | Easily damaged by water and strong chemicals |
Lycra (Spandex) | 1–5 (for smooth surfaces) | 2–3 | 200–400 | >1013 | 70–80 (for thin films) | Resistant to most common chemicals in clothing applications |
Polyester Fabric | 5–15 (yarn surface) | 3–3.5 | 60–120 | >10¹³ | 80–90 (for some grades) | Good against most chemicals and abrasion |
Rubberized Fabric (with natural rubber) | 10–30 (depending on rubber content) | 2.5–3.5 | 150–300 | >1013 | 60–80 (for thin films) | Resistant to water and some abrasion, chemical resistance depends on rubber type |
Polyethylene (PE) | 1–8 | 2.3–2.5 | 150–300 | >1015 | 80–90 (for clear grades) | Good against many organic solvents and weak acids/bases |
Polystyrene (PS) | 2–10 | 2.4–2.6 | 60–80 | >1014 | 85–90 | Poor against many organic solvents |
Acrylonitrile Butadiene Styrene (ABS) | 3–15 | 2.4–3.2 | 80–120 | >1013 | 50–70 (for some grades) | Moderate against chemicals, attacked by some strong solvents |
TPU (Thermoplastic Polyurethane) | 5–20 | 2.8–3.5 | 100–200 | >1013 | 80–90 (for clear grades) | Good abrasion and oil resistance, some sensitivity to polar solvents |
Printing Method | Printing Speed [m/min] | Minimum Resolution [μm] | Ink Viscosity [mPa·s] | Surface Tension [mN/m] | Advantages | Limitations |
---|---|---|---|---|---|---|
Screen Printing | 0.1–15 | 50 | 500–50,000 | 35–50 | Very low prototyping cost | Limited resolution |
Balance between speed, reliability, and cost | Strict ink rheology requirements | |||||
Gravure | 1–2 | 30 | 10–200 | 20–40 | Simple process | High startup costs |
High speed | Expensive prototyping | |||||
Good reliability | ||||||
Suitable for long production runs | ||||||
Inkjet | 0.01–15 | 30 | 1–100 | 10–30 | No additional prototyping cost | Difficulty integrating with roll-to-roll systems |
Excellent resolution and pattern control | Nozzle clogging affects reliability | |||||
Aerosol Jet | 0.01–1 | 10 | 5–10,000 | 10–50 | Compatible with non-planar surfaces | High susceptibility to clogging |
Rapid prototyping | Limitations in ink design | |||||
Compatible with many materials | Low throughput | |||||
Electro-hydrodynamic | 0.01–0.5 | 5 | 100–10,000 | 20–40 | Excellent resolution | Low throughput |
Rapid prototyping | Difficulty achieving high deposition heights | |||||
Flexography | 10–100 | 30–100 | 50–500 | 25–45 | High-speed printing | Limited resolution |
Cost-effective for large batches | Ink formulation complexity | |||||
Offset | 5–30 | 10–20 | 30,000–100,000 | 30–50 | High precision for complex patterns | High equipment cost |
Suitable for large-area production | Requires specialized ink formulation | |||||
Imprint/stamp | 0.1–2 | 5–20 | 50–500 | 20–40 | Simple tooling | Limited to flat surfaces |
Good for replicating micro-/nano-patterns | Low throughput for large quantities |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, X.; Luo, J.; Liu, H.; Fan, S.; Ren, Z.; Wang, P.; Yu, S.; Wei, J. Flexible Strain Sensors Based on Printing Technology: Conductive Inks, Substrates, Printability, and Applications. Materials 2025, 18, 2113. https://doi.org/10.3390/ma18092113
Qi X, Luo J, Liu H, Fan S, Ren Z, Wang P, Yu S, Wei J. Flexible Strain Sensors Based on Printing Technology: Conductive Inks, Substrates, Printability, and Applications. Materials. 2025; 18(9):2113. https://doi.org/10.3390/ma18092113
Chicago/Turabian StyleQi, Xue, Jingjing Luo, Haipeng Liu, Shuheng Fan, Zhongqi Ren, Peike Wang, Suzhu Yu, and Jun Wei. 2025. "Flexible Strain Sensors Based on Printing Technology: Conductive Inks, Substrates, Printability, and Applications" Materials 18, no. 9: 2113. https://doi.org/10.3390/ma18092113
APA StyleQi, X., Luo, J., Liu, H., Fan, S., Ren, Z., Wang, P., Yu, S., & Wei, J. (2025). Flexible Strain Sensors Based on Printing Technology: Conductive Inks, Substrates, Printability, and Applications. Materials, 18(9), 2113. https://doi.org/10.3390/ma18092113