Effect of SiC Concentration on the Microstructure and Anti-Wear Performance of Electrodeposited Ni-SiC Composite Coatings Constructed for Piston Ring Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation
2.2. Characterization
3. Results and Discussion
3.1. Surface Morphology Observation
3.2. XRD Pattern Analysis
3.3. Microhardness Value Measurement
3.4. Anti-Wear Performance Investigation
4. Conclusions
- (1)
- The SEM images show that a dense, flat microstructure with a fine grain size appeared on the surface of the NSc-9, while the NSc-9 and NSc-15 coatings had a cauliflower-like morphology. Meanwhile, the grain sizes of the NSc-3, NSc-9, and NSc-15 coatings were 874 nm, 429 nm, and 635 nm, respectively.
- (2)
- In comparison to the NSc-3 and NSc-15 coatings, the NSc-9 coatings possessed a maximum microhardness of 672 Hv and a minimum indentation depth of 13.7 μm, demonstrating an excellent anti-wear performance.
- (3)
- Furthermore, the NSc-9 coatings had the lowest friction coefficient of 0.46 and the smallest worn weight loss of 29.5 mg, indicating their outstanding anti-wear performance and their expanded application in piston rings.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vural, E.; Ozzel, S.; Ozer, S. Coating of diesel engine with new generation ceramic material to improve combustion and performance. Therm. Sci. 2021, 25, S101–S110. [Google Scholar] [CrossRef]
- Gu, W.S.; Yang, S.; Zhang, S.Y.; Pei, Z.L.; Xue, W.H.; Duan, D.L.; Gong, J.; Sun, C. High-Speed Rubbing Behavior of Abrasive Coating Coated on Titanium Alloy Blade Tips. ACTA Metall. Sin.-Engl. Lett. 2024, 37, 749–762. [Google Scholar] [CrossRef]
- Yilmaz, A.C.; Esen, M. Improving Tribological Performance of Piston Ring Steel Substrates by DLC/Nano-crystalline Diamond Coating. Arab. J. Sci. Eng. 2022, 47, 15441–15453. [Google Scholar] [CrossRef]
- Zhong, Z.Y.; Zhu, Y.S.; Zhang, Y.Y. Experiments on effects of dust particles on the wear of cylinder liner in internal combustion engine. Ind. Lubr. Tribol. 2012, 64, 321–330. [Google Scholar] [CrossRef]
- Huang, P.C.; Chou, C.C.; Hsu, L.S. Preparation and tribological research of the electrodeposited Ni-W alloy coatings for piston ring application. Surf. Coat. Technol. 2021, 411, 126980. [Google Scholar] [CrossRef]
- EI-Nemr, M.A.; Aigbe, U.O.; Ukhurebor, K.E.; Onyancha, R.B.; EI Nemr, A.; Ragab, S.; Osibote, O.A.; Hassaan, M.A. Adsorption of Cr6+ ion using activated Pisum sativum peels-triethylenetetramine. Evironment Sci. Pollut. Res. 2022, 29, 91036–91060. [Google Scholar] [CrossRef]
- Priyadarshi, P.; Katiyar, P.K.; Maurya, R. A review on mechanical, tribological and electrochemical performance of ceramic particle-reinforced Ni-based electrodeposited composite coatings. J. Mater. Sci. 2022, 57, 19179–19211. [Google Scholar] [CrossRef]
- Kucharska, B.; Brojanowska, A.; Poplawski, K.; Sobiecki, J.R. Corrosion resistance of Ni-Al2O3 nanocomposite coatings. Mater. Sci.-Medzg. 2016, 22, 31–35. [Google Scholar] [CrossRef]
- Ali, K.; Narayana, S.; Shakkoor, R.A.; Okonkkwo, P.C.; Yusuf, M.M.; Alashraf, A.; Kahraman, R. Synthesis and Performance evaluation of pulse electrodeposited Ni-AlN nanocomposite coatings. Scanning 2018, 7187024. [Google Scholar] [CrossRef]
- Yang, Z.G.; Yi, S.J.; Cao, L.K.; Tang, S.H.; Li, Q. Process simulation and abrasion behavior of jet electrodeposited Ni-TiN nanocoatings. Coatings 2022, 12, 86. [Google Scholar] [CrossRef]
- Ji, R.J.; Han, K.; Jin, H.; Li, X.P.; Liu, Y.H.; Liu, S.G.; Dong, T.C.; Cai, B.P.; Cheng, W.H. Preparation of Ni-SiC nano-composite coating by rotating magnetic field-assisted electrodeposition. J. Manuf. Process 2020, 57, 787–797. [Google Scholar] [CrossRef]
- Loganathan, A.; Kamdi, Z.; Ainuddin, A.R.; Husin, R.; Ibrahim, A.; Salleh, M.A.A.M. Microstructure characterisation, hardness, and corrosion behaviour of nickel-silicon carbide electrodeposition coating with the influence of ultrasonic action. Arch. Metall. Mater. 2024, 69, 859–863. [Google Scholar] [CrossRef]
- Islam, M.; Azhar, M.R.; Khalid, Y.; Khan, R.; Abdo, H.S.; Dar, M.A.; Oloyede, O.R.; Burleigh, T.D. Electroless Ni-P/SiC nanocomposite coatings with small amounts of SiC nanoparticles for superior corrosion resistance and hardness. J. Mater. Eng. Perform. 2015, 24, 4835–4843. [Google Scholar] [CrossRef]
- Ying, L.X.; Liu, Y.; Liu, G.N.; Li, Z.H.; Wang, G.X. Preparation and Properties of Electroless Plating Wear-resistant and Antifriction Composite Coatings Ni-P-SiC-WS2. Rare Met. Mater. Eng. 2015, 44, 28–31. [Google Scholar]
- Farzaneh, A.; Ehteshamzadeh, M.; Can, M.; Mermer, O.; Okur, S. Effect of SiC particles size on electrochemical of SiC particles size on the electrochemical properties of electroless Ni-P-SiC nanocomposite coatings. Protecction Met. Phys. Chem. Surf. 2016, 52, 632–636. [Google Scholar] [CrossRef]
- Gyawali, G.; Hamal, K.; Joshi, B.; Rajbhandari, A.; Lee, S.W. Microstructural and electrochemical analysis of Ni-SiC composite coatings prepared in presence of additives. Mater. Lett. 2014, 126, 228–231. [Google Scholar] [CrossRef]
- Cui, L.F.; Li, X.; Li, C.Y.; Zhu, L.J.; Zhang, Q.G.; Li, Z.; Liu, H.Y. Research on the Corrosion Resistance of Electrodeposited Ni-SiC Composites Constructed for Steel Storage Tank Application. Materials 2024, 17, 4616. [Google Scholar] [CrossRef]
- Yan, Y.T.; Lu, L.F.; Huo, Y.Q.; Zhao, Y. Characterization and Wear Behaviors of Electrodeposited Ni-MoS2/SiC Composite Coating. Coatings 2022, 12, 1223. [Google Scholar] [CrossRef]
- Dogan, F.; Uysal, M.; Algül, H.; Duru, E.; Akbulut, H.; Aslan, S. Pulsed electrodeposition of Ni-B/TiN composites: Effect of current density on the structure, mechanical, tribological, and corrosion properties. J. Asian Ceram. Soc. 2020, 8, 1271–1284. [Google Scholar] [CrossRef]
- Xian, J.Y.; Shen, Z.Y.; Zhang, Z.W.; Wu, H.B.; Jin, M.F.; Jiang, M.J. Effect of current density on the wear resistance of Ni-P alloy coating prepared through immersion-assisted jet-electrodeposition. Coatings 2021, 11, 527. [Google Scholar] [CrossRef]
- Wang, C.; Shen, L.D.; Qiu, M.B.; Tian, Z.J.; Jiang, W. Characterizations of Ni-CeO2 nanocomposite coating by interlaced jet electrodeposition. J. Alloys Compd. 2017, 727, 269–277. [Google Scholar] [CrossRef]
- Dai, P.Q.; Zhong, Y.H.; Zhou, X. Corrosion characteristic of pulsed electrodeposition Ni-Co/SiC nanocomposite coating. Surf. Eng. 2011, 27, 71–76. [Google Scholar] [CrossRef]
- Ben Temam, H.; Zeroual, L.; Chala, A.; Rahmane, S.; Nouveau, C. Microhardness and Corrosion Behavior of Ni-SiC Electrodeposited Coatings. Plasma Process. Polym. 2007, 4, S618–S621. [Google Scholar] [CrossRef]
- Kan, H.M.; Yang, Z.Y.; Zhang, N. Preparation of Ni-SiC Composite Coating by Electrochemical Deposition. Rare Met. Mater. Eng. 2015, 44, 2960–2964. [Google Scholar]
- Zheng, L.; Li, Y.F.; Liu, M.Y.; Wang, Y.X.; Sun, B.; Zhang, C.M.; Leng, H.Y. Fabrication and Characterization of Al2O3 Particles Reinforced Ni-P-Polytetrafluoroethylene Nanocomposite Coating by Jet Electrodeposition. J. Mater. Eng. Perform. 2023, 32, 8503–8515. [Google Scholar] [CrossRef]
- Chen, Y.L.; Li, H.G.; Zhu, J.C.; Fang, C.; Li, Z.Q.; Jiang, W. Fabrication of Ni-TiN nanocomposite coatings by ultrasonic assisted jet electrodeposition. Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf. 2024, 238, 1507–1518. [Google Scholar] [CrossRef]
- Jiang, W.; Shen, L.D.; Qiu, M.B.; Xu, M.Y.; Tian, Z.J. Microhardness, wear, and corrosion resistance of Ni-SiC composite coating with magnetic-field-assisted jet electrodeposition. Mater. Res. Express 2018, 5, 96407. [Google Scholar] [CrossRef]
- Li, C.Y.; Xia, F.F.; Yao, L.M.; Li, H.X.; Jia, X. Investigation of the mechanical properties and corrosion behaviors of Ni-BN-TiC layers constructed via laser cladding technique. Ceram. Int. 2023, 49, 6671–6677. [Google Scholar] [CrossRef]
- Lamovec, J.; Jovic, V.; Vorkapic, M.; Popovic, B.; Radojevic, V.; Aleksic, R. Microhardness analysis of thin metallic multilayer composite films on copper substrates. J. Min. Metall. Sect. B-Metall. 2011, 47, 53–61. [Google Scholar] [CrossRef]
- Ma, C.Y.; Zhao, D.Q.; Liu, W.Q.; Xia, F.F.; Jin, P.; Sun, C.F. Magnetic assisted pulse electrodeposition and characterization of Ni-TiC nanocomposites. Ceram. Int. 2020, 46, 17631–79639. [Google Scholar] [CrossRef]
- Liu, W.Q.; Jiang, K.D.; Li, Q.; Ma, C.Y.; Xia, F.F. Jet Pulse Electrodeposited Ni-SiC Thin Coatings by Using Experimental System Designed for Potential Industrial Application. Int. J. Electrochem. Sci. 2021, 16, 21044. [Google Scholar] [CrossRef]
- Xia, F.F.; Li, C.Y.; Ma, C.Y.; Li, Q.; Xing, H.Y. Effect of pulse current density on microstructure and wear property of Ni-TiN nanocoatings deposited via pulse electrodeposition. Appl. Surf. Sci. 2021, 538, 148139. [Google Scholar] [CrossRef]
- Kozik, A.; Nowak, M.; Gawlik, M.; Bigaj, M.; Karas, M. The effecT of dIspersIon phases of sic and AL2O3 on The properTIes of galvanIc nIckel coaTIngs. Arch. Metall. Mater. 2016, 61, 375–380. [Google Scholar] [CrossRef]
- Balaji, R.; Pushpavanam, M.; Kumar, K.Y.; Subramanian, K. Electrodeposition of bronze-PTFE composite coatings and study on their tribological characteristics. Surf. Coat. Technol. 2006, 201, 3205–3211. [Google Scholar] [CrossRef]
- Wang, S.Q.; Xie, F.Q.; Wu, X.Q. Effect of SiC contents on wear resistance performance of electro-codeposited Ni-SiC composite Coatings. Coatings 2024, 14, 1224. [Google Scholar] [CrossRef]
Chemical Reagent | Specific |
---|---|
NiSO4·6H2O (g/L) | 240 |
NiCl2·6H2O (g/L) | 35 |
CTAB (mg/L) | 50 |
H3BO3 (g/L) | 30 |
SiC concentration (g/L) | 3, 9, and 15 |
Operation Parameters | Specific |
---|---|
Current density (A/dm2) | 4.5 |
Electrolyte temperature (°C) | 55 |
Electrodeposition time (min) | 40 |
pH | 4.1 |
Duty cycle (%) | 30 |
Agitation speed (rmp) | 600 |
SiC Concentration | 3 g/L | 9 g/L | 15 g/L |
Si Content of Composite Coatings | 1.9 wt.% | 3.2 wt.% | 4.5 wt.% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Wang, Q.; Shen, H.; Bai, C.; Li, C.; Tian, D.; Wang, B. Effect of SiC Concentration on the Microstructure and Anti-Wear Performance of Electrodeposited Ni-SiC Composite Coatings Constructed for Piston Ring Application. Materials 2025, 18, 1117. https://doi.org/10.3390/ma18051117
Zhang F, Wang Q, Shen H, Bai C, Li C, Tian D, Wang B. Effect of SiC Concentration on the Microstructure and Anti-Wear Performance of Electrodeposited Ni-SiC Composite Coatings Constructed for Piston Ring Application. Materials. 2025; 18(5):1117. https://doi.org/10.3390/ma18051117
Chicago/Turabian StyleZhang, Fengwu, Qiuhua Wang, Huajie Shen, Caixia Bai, Chaoyu Li, Dehao Tian, and Baojin Wang. 2025. "Effect of SiC Concentration on the Microstructure and Anti-Wear Performance of Electrodeposited Ni-SiC Composite Coatings Constructed for Piston Ring Application" Materials 18, no. 5: 1117. https://doi.org/10.3390/ma18051117
APA StyleZhang, F., Wang, Q., Shen, H., Bai, C., Li, C., Tian, D., & Wang, B. (2025). Effect of SiC Concentration on the Microstructure and Anti-Wear Performance of Electrodeposited Ni-SiC Composite Coatings Constructed for Piston Ring Application. Materials, 18(5), 1117. https://doi.org/10.3390/ma18051117