Influence of Pavement Material and Structure on Low-Temperature Crack Resistance for Double-Layer Asphalt Surface One-Time Paving
Abstract
:1. Introduction
2. Raw Materials and Test Scheme
2.1. Raw Materials
2.1.1. Asphalt
2.1.2. Coarse Aggregate
2.1.3. Fine Aggregate
2.1.4. Mineral Powder
2.2. Test Scheme
2.2.1. Mixture Types and Gradations
2.2.2. Structure Layer Thickness
2.2.3. Paving Process
2.3. Low-Temperature Bending Test and Evaluation Index
2.3.1. Maximum Flexural Strain
2.3.2. Flexural Strain Energy Density
3. Experimental Results and Analysis
3.1. Rutting Test Results
3.2. Influence of Paving Process on Low-Temperature Crack Resistance of Mixture
3.3. Influence of Mixture Type on Low-Temperature Crack Resistance of Mixture
3.4. Influence of Structural Layer Thickness on Low-Temperature Crack Resistance of Mixture
4. Engineering Application Effect
4.1. Compaction Degree
4.2. Smoothness
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ji, X.; Zheng, N.; Hou, Y.; Niu, S. Application of asphalt mixture shear strength to evaluate pavement rutting with Accelerated Loading Facility (ALF). Constr. Build. Mater. 2013, 41, 1–8. [Google Scholar] [CrossRef]
- Decky, M.; Hodasova, K.; Papanova, Z.; Remisova, E. Sustainable adaptive cycle pavements using composite foam concrete at high altitudes in central Europe. Sustainability 2022, 14, 9034. [Google Scholar] [CrossRef]
- Mu, K. Research on Double-Layer Integrated Paving Technology of Asphalt Pavement; Chang’an University: Xi’an, China, 2012. [Google Scholar]
- Mu, K.; Gao, Z.W.; Shi, X.; Li, Y.W. Interface behavior of asphalt pavements constructed by conventional and double-decked paving methods. Materials 2020, 13, 1351. [Google Scholar] [CrossRef] [PubMed]
- Fu, G.; Zhao, Y.; Ong, G.P.; Wang, Y.; Lu, J. Effects of transverse cracks on the backcalculated layer properties of asphalt pavements from non-destructive testing data. J. Nondestruct. Eval. 2023, 42, 69. [Google Scholar] [CrossRef]
- Li, M.; Han, Z.; Cheng, H.; Yang, R.; Yuan, J.; Jin, T. Low-temperature Performance Improvement Strategies for High RAP content Recycled Asphalt Mixtures: Focus on RAP Gradation Variability and Mixing Process. Fuel 2025, 387, 134362. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, S.; Li, L.; Li, P. Evaluation of cracking resistance in alaskan asphalt pavement with paving interlayers. J. Cold Reg. Eng. 2018, 32, 04018005. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Yi, Y.; Fan, J.T.; Tian, T.; Deng, C.Q. Laboratory investigation on the heat dissipation regularity and road performance of different pavement structure combinations by double-layer paving. Constr. Build. Mater. 2021, 284, 122785. [Google Scholar] [CrossRef]
- Gong, M.Y.; Yuan, M.; Zhang, H.T. Mechanical and functional properties of continuously paving functional asphalt mixture with double-gradation based on different volumetric ratios. J. Mater. Civ. Eng. 2024, 36, 04024271. [Google Scholar] [CrossRef]
- Harvey, J.T.; Deacon, J.A.; Tsai, B.W.; Monismith, C.L. Fatigue Performance of Asphalt Concrete Mixes and Its Relationship to Asphalt Concrete Pavement Performance in California; University of California, Berkeley, California Department of Transportation: Berkeley, CA, USA, 1995. [Google Scholar]
- Gong, M.Y.; Zhang, H.T.; Wu, J. CZM analysis and evaluation of influencing factors on interlayer adhesion of asphalt mixture with double-layer continuous pave. Constr. Build. Mater. 2021, 302, 124211. [Google Scholar] [CrossRef]
- Tang, G.Q.; Cao, D.W.; Zhong, K.; Yang, X.Q. Technological study on interlayer bonding of double-layer porous asphalt pavement. Prog. Ind. Civ. Eng. 2013, 405–408, 1725. [Google Scholar] [CrossRef]
- Liao, G.Y.; Zha, J.J.; Lu, X.Y.; Wu, W.; Zhang, W.J.; Wang, H.; Zhang, Z.S.; Liu, X.D. Spectral noise reduction of double-layer porous asphalt: From laboratory to field. Constr. Build. Mater. 2024, 445, 138025. [Google Scholar] [CrossRef]
- Yuan, M.M.; Wang, J.; Wang, Y.Q.; Shao, S.G. Study on noise reduction with paving different low noise pavement materials. Appl. Sci. 2021, 11, 10273. [Google Scholar] [CrossRef]
- Morgan, P.A.; Stait, R.E.; Reeves, S.; Clifton, M. The Feasibility of Using Twin Layer Porous Asphalt Surfaces in the UK; TRL: Berkshire, UK, 2007. [Google Scholar]
- Gharabaghy, C.; Arnold, P.; Scharnigg, K.; Schulze, C. State-of-the-Art Experience in the Use of the Compact Asphalt Paver for the Construction of Thin-Bed Low Noise Open-Pored 2-Course Asphalt Surfacings: State-of-the-Art Technology and Practice in the Netherlands and Germany; Aachen Institute for Highway/RWTH Aachen: Aachen, Germany, 2005. [Google Scholar]
- Chu, L.; Fwa, T.F. Functional sustainability of single-and double-layer porous asphalt pavements. Constr. Build. Mater. 2019, 197, 436–443. [Google Scholar] [CrossRef]
- Füleki, P. Improving pavement performance by compact-asphalt technology. Pollack Period. 2009, 4, 111–120. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Wang, B. Double-layer paving technology and performance of asphalt concrete pavement. J. China Foreign Highw. 2007, 27, 66–70. [Google Scholar]
- Li, Y. Analysis of Economy of Heat-to-Heat Paving Technique for Asphalt Pavement. Constr. Mach. Constr. Technol. 2011, 54–60. [Google Scholar]
- Deng, C.; Jiang, Y.; Han, Z.; Lin, H.; Fan, J. Effects of paving technology, pavement materials, and structures on the fatigue property of double-layer pavements. Adv. Mater. Sci. Eng. 2020, 2020, 5038370. [Google Scholar] [CrossRef]
- Jiang, Y.; Lin, H.; Xue, J.; Han, Z.; Chen, Z. Influences of pavement material and structure on the high-temperature stability of double-layer pavements. J. Mater. Civ. Eng. 2020, 32, 04020020. [Google Scholar] [CrossRef]
- Liu, M.; Huang, X.; Xue, G. Effects of double layer porous asphalt pavement of urban streets on noise reduction. Int. J. Sustain. Built Environ. 2016, 5, 183–196. [Google Scholar] [CrossRef]
- Yang, Y.; Mu, K.; Wang, X.; Wang, Z. Research on interlayer effect of double-layer paved asphalt pavement. J. Highw. Transp. Res. Dev. (Appl. Technol. Ed.) 2012, 3, 57–58. [Google Scholar]
- Wang, L. Research on shear performance of double-layer paved pavement. Highw. Automot. Appl. 2010, 4, 82–85. [Google Scholar]
- Fu, G.; Cao, D.; Ong, G.P.; Wang, J.; Sha, D. A viscoelastic wave propagation approach for dynamic backcalculation of layer properties of asphalt pavements under an impact load. Comput. Geotechincs 2024, 176, 106752. [Google Scholar] [CrossRef]
- Han, Z.; Liu, Z.; Jiang, Y.; Wu, P.; Li, S.; Sun, G.; Zhang, L. Engineering properties and air void characteristics of cold recycled mixtures with different compaction methods. J. Build. Eng. 2023, 77, 107430. [Google Scholar] [CrossRef]
- Han, Z.; Jiang, D.; Liu, L.; Sun, L. Low-temperature performance improvement measures for emulsified asphalt cold recycled mixture: A comparative study. J. Mater. Civ. Eng. 2023, 35, 04023108. [Google Scholar] [CrossRef]
- Xing, C.; Tang, S.; Chang, Z.; Han, Z.; Li, H.; Zhu, B. A comprehensive review on the plant-mixed cold recycling technology of emulsified asphalt: Raw materials and factors affecting performances. Constr. Build. Mater. 2024, 439, 137344. [Google Scholar] [CrossRef]
- JTG E20-2011; Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. Ministry of Transportation: Beijing, China, 2011.
Test Item | Measured Value | Specification/Required Value | |
---|---|---|---|
Penetration at 25 °C (0.1 mm) | 67.5 | 60~80 | |
Penetration Index | −0.92 | −1.5~+1.0 | |
Ductility (5 cm/min, 15 °C, cm) | >100 | ≮100 | |
Ductility (5 cm/min, 10 °C, cm) | 39.2 | ≮25 | |
Softening Point (°C) | 49.2 | ≮46 | |
60 °C Dynamic Viscosity (Pa·s) | 239.4 | ≮180 | |
Wax Content (%) | 1.75 | ≯2.0 | |
Density (15 °C, g/cm3) | 1.015 | Actual Measurement Record | |
Flash Point (°C) | 278 | ≮260 | |
Solubility (%) | 99.8 | ≮99.5 | |
Rotating Film Aging Test (163 °C, 85 min) | Mass Loss (%) | −0.59 | ≯±0.8 |
Penetration Ratio (%) | 62.5 | ≮61 | |
Ductility (10 °C, cm) | 9.8 | ≮8 |
Test Item | Measured Value | Specification Value | Required Value | |
---|---|---|---|---|
25 °C Density (g/cm3) | 1.034 | Actual Measurement Record | ||
Penetration (25 °C, 100 g, 5 s) (0.1 mm) | 68 | 60~80 | 60~80 | |
Penetration Index PI | 0.56 | ≥−0.4 | ≥−0.4 | |
Ductility (5 cm/min, 5 °C) (cm) | 37 | ≥30 | ≥35 | |
Softening Point (Ring and Ball Method) (°C) | 88 | ≥55 | ≥75 | |
135 °C Kinematic Viscosity (Pa·s) | 2.4 | ≤3.0 | 1.8~3.0 | |
Solubility (Trichloroethylene) (%) | 99.7 | ≥99 | ≥99 | |
25 °C Elastic Recovery (%) | 95 | ≥65 | ≥80 | |
Thin Film Oven Test, 163 °C, 5 h | Mass Loss (%) | −0.978 | ≤±1.0 | ≤±1.0 |
Penetration Ratio (%) | 73.2 | ≥60 | ≥70 | |
Ductility (10 °C, cm) | 32.5 | ≥20 | ≥25 |
Test Item | Technical Indexes of Aggregates of the Following Specifications | Specification/Required Value | |||
---|---|---|---|---|---|
19~26.5 mm | 9.5~19 mm | 4.75~9.5 mm | 2.36~4.75 mm | ||
Apparent Relative Density | 2.861 | 2.848 | 2.826 | 2.811 | ≥2.5 |
Water Absorption (%) | 0.34 | 0.39 | 0.68 | - | ≤3 |
Needle and Flake Particle Content (%) | 10.9 | 8.7 | 8.1 | - | ≤15 (particle size ≥ 9.5), ≤20 (others) |
Crushing Value (%) | 15.9 | ≤26 | |||
Abrasion Value (%) | 17.0 | ≤30 | |||
Adhesion to Asphalt (Grade) | 5 | ≥4 | |||
Soundness (%) | 4.7 | ≤12 | |||
Soft Stone Content (%) | 1.2 | ≤3 |
Index | Test Result | Project Requirement Value |
---|---|---|
Sand Equivalent (%) | 81.4 | ≥60 |
Methylene Blue Value (g/kg) | 0.9 | ≤25 |
Angularity (s) | 45.5 | ≥30 |
Apparent Density (g/cm3) | 2.774 | ≥2.5 |
Soundness (%) | 5.5 | ≤12 |
Test Item | Measured Value | Specification/Required Value | |
---|---|---|---|
Apparent Relative Density | 2.814 | ≥2.5 | |
Water Content (%) | 0.2 | ≤1 | |
Appearance | No Agglomeration | No Agglomeration | |
Particle Size Range (%) | <0.6 mm | 100 | 100 |
<0.15 mm | 99.5 | 90~100 | |
<0.075 mm | 92.8 | 75~100 | |
Hydrophilic Coefficient | 0.6 | <1 | |
Heating Stability | Good | Actual Measurement Record | |
CaCO3 Content (%) | 95 | ≥90 |
Mixture Type | Percentage of Passing by Mass Through the Following Sieves (mm) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
31.5 | 26.5 | 19 | 16 | 13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 | |
AC-13 | - | - | - | 100 | 90.6 | 81.1 | 55.3 | 39.5 | 28.5 | 14.9 | 9.2 | 8.4 | 7.3 |
AC-16 | - | - | 100 | 97.5 | 86.9 | 72.4 | 46.6 | 34.9 | 26.4 | 13.8 | 10.2 | 7.8 | 4.9 |
AC-20 | - | 100 | 94.6 | 84.5 | 75.6 | 65.4 | 44.6 | 34.4 | 22.3 | 16.5 | 9.1 | 7.2 | 5.9 |
AC-25 | 100 | 98.6 | 82.8 | 73.2 | 64.4 | 54.5 | 43.3 | 34.9 | 24.2 | 16.5 | 9.4 | 7.3 | 4.5 |
Mixture Type | Optimal Asphalt–Aggregate Ratio (%) | Bulk Density (g/cm3) | Theoretical Maximum Density (g/cm3) | Void Ratio (%) | Saturation Degree (%) | Voids in Mineral Aggregate (%) | Stability (kN) | Flow Value (mm) |
---|---|---|---|---|---|---|---|---|
AC-13 | 4.8 | 2.525 | 2.605 | 3.1 | 75.1 | 13.9 | 12.6 | 3.8 |
AC-16 | 4.6 | 2.489 | 2.580 | 3.5 | 73.5 | 14.0 | 13.8 | 3.4 |
AC-20 | 4.3 | 2.481 | 2.589 | 4.2 | 72.1 | 14.2 | 14.7 | 2.5 |
AC-25 | 3.9 | 2.465 | 2.591 | 5.4 | 70.5 | 16.1 | 13.9 | 3.2 |
Mixture Type | Structure Thickness (cm) | Traditional Paving | Double-Layer Paving | ||||
---|---|---|---|---|---|---|---|
Upper Layer | Lower Layer | Upper Layer | Lower Layer | εB/με | Wr/kPa | εB/με | Wr/kPa |
AC-16 | AC-20 | 3 | 7 | 2822 | 39.48 | 3185 | 46.63 |
4 | 6 | 2533 | 33.15 | 2846 | 40.43 | ||
5 | 5 | 2231 | 26.83 | 2498 | 32.45 | ||
AC-25 | 3 | 7 | 2595 | 34.85 | 2931 | 40.11 | |
4 | 6 | 2417 | 31.03 | 2653 | 35.73 | ||
5 | 5 | 2105 | 23.22 | 2485 | 26.15 | ||
AC-13 | AC-20 | 3 | 7 | 2600 | 32.98 | 2838 | 38.84 |
4 | 6 | 2372 | 25.44 | 2633 | 34.19 | ||
5 | 5 | 2009 | 24.22 | 2588 | 31.27 | ||
AC-25 | 3 | 7 | 2256 | 25.17 | 2504 | 30.52 | |
4 | 6 | 2119 | 22.54 | 2393 | 27.89 | ||
5 | 5 | 1853 | 19.48 | 2305 | 25.75 |
Mixture Type | Structure Thickness (cm) | εB_Double/ εB_Traditional | Wr_Double/ Wr_Traditional | ||
---|---|---|---|---|---|
Upper Layer | Lower Layer | Upper Layer | Lower Layer | ||
AC-16 | AC-20 | 3 | 7 | 1.13 | 1.18 |
4 | 6 | 1.12 | 1.22 | ||
5 | 5 | 1.12 | 1.21 | ||
AC-25 | 3 | 7 | 1.13 | 1.15 | |
4 | 6 | 1.10 | 1.15 | ||
5 | 5 | 1.18 | 1.13 | ||
AC-13 | AC-20 | 3 | 7 | 1.10 | 1.18 |
4 | 6 | 1.11 | 1.34 | ||
5 | 5 | 1.29 | 1.29 | ||
AC-25 | 3 | 7 | 1.12 | 1.21 | |
4 | 6 | 1.10 | 1.24 | ||
5 | 5 | 1.24 | 1.32 |
Different Paving Processes | Field Density/(g/cm3) | Standard Density/(g/cm3) | Core Sample Compaction Degree/% |
---|---|---|---|
Double-Layer One-Time Paving | 2.358 | 2.392 | 98.6 |
Traditional Layered Paving | 2.321 | 2.358 | 98.4 |
Paving Process | Double-Layer One-Time Paving | Traditional Layered Paving |
---|---|---|
Smoothness/mm | 2.06 | 1.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Han, Z.; Mao, Y.; Wang, S.; Zhao, H.; Zhang, S.; Li, M. Influence of Pavement Material and Structure on Low-Temperature Crack Resistance for Double-Layer Asphalt Surface One-Time Paving. Materials 2025, 18, 1037. https://doi.org/10.3390/ma18051037
Wu B, Han Z, Mao Y, Wang S, Zhao H, Zhang S, Li M. Influence of Pavement Material and Structure on Low-Temperature Crack Resistance for Double-Layer Asphalt Surface One-Time Paving. Materials. 2025; 18(5):1037. https://doi.org/10.3390/ma18051037
Chicago/Turabian StyleWu, Bingyang, Zhanchuang Han, Yunbo Mao, Shuai Wang, Hui Zhao, Shuo Zhang, and Mingchen Li. 2025. "Influence of Pavement Material and Structure on Low-Temperature Crack Resistance for Double-Layer Asphalt Surface One-Time Paving" Materials 18, no. 5: 1037. https://doi.org/10.3390/ma18051037
APA StyleWu, B., Han, Z., Mao, Y., Wang, S., Zhao, H., Zhang, S., & Li, M. (2025). Influence of Pavement Material and Structure on Low-Temperature Crack Resistance for Double-Layer Asphalt Surface One-Time Paving. Materials, 18(5), 1037. https://doi.org/10.3390/ma18051037