Enhancing Mechanical and Thermal Performance of Recycled PA6/PP Blends: Chain Extension and Carbon Fiber Reinforcement Synergy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Used Materials
2.2. Sample Preparation
2.3. Characterization
3. Results and Discussion
3.1. Structural (FTIR) Analysis
3.2. Thermal (DSC) Analysis
3.3. Molecular Analysis and Reologic Test
3.4. Mechanical Thermal (HDT) Analysis
3.5. Mechanical (Tensile) Analysis
3.6. Mechanical (Izod Impact) Test
3.7. Hardness Test
3.8. Morphological (SEM) Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CE | Chain extender |
CF | Carbon fiber |
PA | Polyamide |
DSC | Differential scanning calorimetry |
HDT | Heat deflection temperature |
PP | Polypropylene |
References
- Williams, E.A.; Williams, P.T. Analysis of products derived from the fast pyrolysis of plastic waste. J. Anal. Appl. Pyrolysis 1997, 40–41, 347–363. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. There are 8.3 billion tons of plastic in the world. Sci. Adv. 2017, 3, 1700782. [Google Scholar] [CrossRef] [PubMed]
- Pinto, F.; Costa, P.; Gulyurtlu, I.; Cabrita, I. Pyrolysis of plastic wastes: Effect of plastic waste composition on product yield. J. Anal. Appl. Pyrolysis 1999, 51, 39–55. [Google Scholar] [CrossRef]
- Evode, N.; Qamar, S.A.; Bilal, M.; Barceló, D.; Iqbal, H.M. Plastic waste and its management strategies for environmental sustainability. Case Stud. Chem. Environ. Eng. 2021, 4, 100142. [Google Scholar] [CrossRef]
- Rides, M.; Allen, C.; Omloo, H.; Nakayama, K.; Cancelli, G. Interlaboratory Comparison of Melt Flow Rate Testing of Moisture Sensitive Plastics. Polym. Test. 2009, 28, 572–591. [Google Scholar] [CrossRef]
- Abacha, N.; Kubouchi, M.; Sakai, T. Diffusion Behavior of Water in Polyamide 6 Organoclay Nanocomposites. Express Polym. Lett. 2009, 3, 245–255. [Google Scholar] [CrossRef]
- Arhant, M.; Le Gac, P.-Y.; Le Gall, M.; Burtin, C.; Briançon, C.; Davies, P. Modelling the Non-Fickian Water Absorption in Polyamide 6. Polym. Degrad. Stab. 2016, 133, 404–412. [Google Scholar] [CrossRef]
- Kuda-Malwathumullage, C.P.S.; Small, G.W. Determination of Moisture Content of Polyamide 66 Directly from Combination Region Near-Infrared Spectra. J. Appl. Polym. Sci. 2014, 131, 40645. [Google Scholar] [CrossRef]
- Degli Esposti, M.; Morselli, D.; Fava, F.; Bertin, L.; Cavani, F.; Viaggi, D.; Fabbri, P. The role of biotechnology in the transition from plastics to bioplastics: An opportunity to reconnect global growth with sustainability. FEBS Open Bio. 2021, 11, 967–983. [Google Scholar] [CrossRef] [PubMed]
- Morales, J.; Rodrigue, D. The Effect of Reprocessing and Moisture on Polyamide Recycling: A Focus on Neat, Composites, and Blends. Macromol. Mater. Eng. 2024, 310, 2400304. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Androniceanu, A.; Kinnunen, J.; Georgescu, I. Circular economy as a strategic option to promote sustainable economic growth and effective human development. J. Int. Stud. 2021, 14, 60–73. [Google Scholar] [CrossRef]
- Kondo, M.Y.; Montagna, L.S.; Morgado, G.F.D.M.; Castilho, A.L.G.D.; Batista, L.A.P.D.S.; Botelho, E.C.; Costa, M.L.; Passador, F.B.; Rezende, M.C.; Ribeiro, M.V. Recent advances in the use of polyamide-based materials for the automotive industry. Polímeros 2022, 32, e2022023. [Google Scholar] [CrossRef]
- Gardner, D.J.; Han, Y. Mechanical properties of hybrid basalt-carbon fiber-filled recycled polypropylene and polyamide 6 composites. In 2017 SPE Automotive Composites Conference; SPE: Port Huron, MI, USA, 2017. [Google Scholar]
- Beyaz, R.; Ekinci, A.; Yurtbasi, Z.; Oksuz, M.; Ates, M.; Aydin, I. Thermal, electrical and mechanical properties of carbon fiber/copper powder/carbon black reinforced hybrid polyamide 6,6 composites. High Perform. Polym. 2023, 35, 103–114. [Google Scholar] [CrossRef]
- Odrobina, M.; Deák, T.; Székely, L.; Mankovits, T.; Keresztes, R.Z.; Kalácska, G. The effect of crystallinity on the toughness of cast polyamide 6 rods with different diameters. Polymers 2020, 12, 293. [Google Scholar] [CrossRef]
- Zhu, S.; Guo, Y.; Chen, Y.; Liu, S. Low water absorption, high-strength polyamide 6 composites blended with sustainable bamboo-based biochar. Nanomaterials 2020, 10, 1367. [Google Scholar] [CrossRef]
- Zhou, S.; Luo, W.; Zou, H.; Liang, M.; Li, S. Enhanced thermal conductivity of polyamide 6/polypropylene (PA6/PP) immiscible blends with high loadings of graphite. J. Compos. Mater. 2016, 50, 327–337. [Google Scholar] [CrossRef]
- Abdelwahab, M.A.; Chang, B.P.; Mohanty, A.K.; Misra, M. Waste valorization in sustainable engineering materials: Reactive processing of recycled carpets waste with polyamide 6. Polym. Test. 2022, 114, 107681. [Google Scholar] [CrossRef]
- Al Menen, B.; Ekinci, A.; Oksuz, M.; Ates, M.; Aydin, I. Effect of processing parameters on the properties of two-component injection molded recycled polypropylene/ethylene propylene diene monomer automotive parts. Int. J. Adv. Manuf. Technol. 2023, 127, 845–860. [Google Scholar] [CrossRef]
- Ekinci, A.; Oksuz, M.; Ates, M.; Aydin, I. Thermal and mechanical properties of polypropylene/post-consumer poly(ethylene terephthalate) blends: Bottle-to-bottle recycling. J. Polym. Res. 2022, 29, 433. [Google Scholar] [CrossRef]
- Santos, J.; Pizzol, M.; Azarijafari, H. Life cycle assessment (LCA) of using recycled plastic waste in road pavements: Theoretical modeling. In Plastic Waste for Sustainable Asphalt Roads; Woodhead Publishing: Sawston, UK, 2022; pp. 273–302. [Google Scholar] [CrossRef]
- Chongprakobkit, S.; Opaprakasit, M.; Chuayjuljit, S. Use of PP-g-MA prepared by solution process as compatibilizer in polypropylene/polyamide 6 blends. J. Met. Mater. Miner. 2007, 17, 9–16. [Google Scholar]
- Hong, J.H.; Choi, C.W.; Ramasundaram, S.; Anand Prabu, A.; Lee, J.S.; Kim, K.J.; Yang, J.H.; Lee, D.J. Studies on the recycling of glycolyzed nylon 66 using novel chain extenders. Polym. Degrad. Stab. 2008, 93, 392–400. [Google Scholar] [CrossRef]
- Buccella, M.; Dorigato, A.; Pasqualini, E.; Caldara, M.; Fambri, L. Thermo-mechanical properties of polyamide 6 chemically modified by chain extension with polyamide/polycarbonate blend. J. Polym. Res. 2012, 19, 9935. [Google Scholar] [CrossRef]
- Ekinci, A.; Oksuz, M.; Ates, M.; Aydin, I. Polypropylene/postconsumer recycled poly(ethylene terephthalate) hybrid composites: Evaluation of morphological, mechanical, thermal and electrical properties. Iran. Polym. J. 2022, 31, 1283–1295. [Google Scholar] [CrossRef]
- Roeder, J.; Oliveira, R.V.B.; Gonçalves, M.C.; Soldi, V.; Pires, A.T.N. Polypropylene/polyamide-6 blends: Influence of compatibilizing agent on interface domains. Polym. Test. 2002, 21, 815–821. [Google Scholar] [CrossRef]
- Sangroniz, L.; Palacios, J.K.; Fernández, M.; Eguiazabal, J.I.; Santamaria, A.; Müller, A.J. Linear and non-linear rheological behavior of polypropylene/polyamide blends modified with a compatibilizer agent and nanosilica and its relationship with the morphology. Eur. Polym. J. 2016, 83, 10–21. [Google Scholar] [CrossRef]
- Tanniru, M.; Tambe, P. Selective localization of rice husk derived graphene in reactive compatibilized PP/PA6 blends: Influence on morphology, interface and mechanical properties. Fuller. Nanotub. Carbon Nanostructures 2022, 30, 242–257. [Google Scholar] [CrossRef]
- Huber, T.; Misra, M.; Mohanty, A.K. Mechanical properties of compatibilized nylon 6/polypropylene blends; studies of the interfacial behavior through an emulsion model. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Li, D.; Jia, D.; Zhou, P. Compatibilization of polypropylene/nylon 6 blends with a polypropylene solid-phase graft. J. Appl. Polym. Sci. 2004, 93, 420–427. [Google Scholar] [CrossRef]
- Shaikh, H.; Gulrez, S.K.; Anis, A.; Poulose, A.M.; Qua, P.E.; Yadav, M.K.; Al-Zahrani, S.M. Progress in carbon fiber and its polypropylene-and polyethylene-based composites. Polym.-Plast. Technol. Eng. 2014, 53, 1845–1860. [Google Scholar] [CrossRef]
- Tuna, B.; Ozkoc, G. Effects of diisocyanate and polymeric epoxidized chain extenders on the properties of recycled poly(lactic acid). J. Polym. Environ. 2017, 25, 983–993. [Google Scholar] [CrossRef]
- Lozano-González, M.J.; Rodriguez-Hernandez, M.T.; Gonzalez-De Los Santos, E.A.; Villalpando-Olmos, J. Physical–mechanical properties and morphological study on nylon-6 recycling by injection molding. J. Appl. Polym. Sci. 2000, 76, 851–858. [Google Scholar] [CrossRef]
- Li, T.; Zheng, T.; Han, J.; Liu, Z.; Guo, Z.X.; Zhuang, Z.; Xu, J.; Guo, B.H. Effects of diisocyanate structure and disulfide chain extender on hard segmental packing and self-healing property of polyurea elastomers. Polymers 2019, 11, 838. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, S.; Gul, O.; Yilmaz, T. Effect of chain extender and terpolymers on tensile and fracture properties of polyamide 6. Polymer 2015, 65, 63–71. [Google Scholar] [CrossRef]
- Mayouf, I.; Guessoum, M.; Fuensanta, M.; Martinez, J.M.M. Appraisal of ε-caprolactam and trimellitic anhydride potential as novel chain extenders for poly(lactic acid). Polym. Eng. Sci. 2020, 60, 944–955. [Google Scholar] [CrossRef]
- Ozmen, S.C.; Ozkoc, G.; Serhatli, E. Thermal, mechanical and physical properties of chain extended recycled polyamide 6 via reactive extrusion: Effect of chain extender types. Polym. Degrad. Stab. 2019, 162, 76–84. [Google Scholar] [CrossRef]
- Costa, A.R.D.M.; Henrique, M.A.; Luna, C.B.B.; Carvalho, L.H.D.; Almeida, Y.M.B.D. Influence of a multifunctional epoxy additive on the performance of polyamide 6 and PET post-consumed blends during processing. Sustainability 2022, 14, 16658. [Google Scholar] [CrossRef]
- Luna, C.B.B.; Ferreira, E.D.S.B.; Costa, A.R.D.M.; De Almeida, Y.M.B.; De Melo, J.B.D.C.A.; Araújo, E.M. Toward reactive processing of polyamide 6 based blends with polyethylene grafted with maleic anhydride and acrylic acid: Effect of functionalization degree. Macro React. Eng. 2023, 17, 2300031. [Google Scholar] [CrossRef]
- Ueda, M.; Nakayama, D.; Katsuta, N.; Okoshi, M. High-throughput 3D printing of continuous carbon fiber–reinforced polyamide 6/maleic anhydride-modified polypropylene/polypropylene composite by a multifilament feeder. Compos. Adv. Mater. 2023, 32, 26349833231158395. [Google Scholar] [CrossRef]
- Nguyen-Tran, H.D.; Hoang, V.T.; Do, V.T.; Chun, D.M.; Yum, Y.J. Effect of multiwalled carbon nanotubes on the mechanical properties of carbon fiber-reinforced polyamide-6/polypropylene composites for lightweight automotive parts. Materials 2018, 11, 429. [Google Scholar] [CrossRef] [PubMed]
- Aparna, S.; Purnima, D.; Adusumalli, R.B. Review on various compatibilizers and its effect on mechanical properties of compatibilized nylon blends. Polym.-Plast. Technol. Eng. 2017, 56, 617–634. [Google Scholar] [CrossRef]
- Sridhar, A.; Doddipatla, P. Influence of PP content on mechanical properties, water absorption, and morphology in PA6/PP blend. J. Appl. Polym. Sci. 2019, 136, 47690. [Google Scholar] [CrossRef]
- Do, V.T.; Nguyen-Tran, H.D.; Chun, D.M. Effect of polypropylene on the mechanical properties and water absorption of carbon-fiber-reinforced-polyamide-6/polypropylene composite. Compos. Struct. 2016, 150, 240–245. [Google Scholar] [CrossRef]
- Aparna, S.; Purnima, D.; Adusumalli, R.B. Effect of short carbon fiber content and water absorption on tensile and impact properties of PA6/PP blend based composites. Polym. Compos. 2020, 41, 5167–5181. [Google Scholar] [CrossRef]
- Hazrati, H.; Jahanbakhshi, N.; Rostamizadeh, M. Hydrophilic polypropylene microporous membrane for use in a membrane bioreactor system and optimization of preparation conditions by response surface methodology. Polyolefins J. 2018, 5, 97–109. [Google Scholar]
- Pham, H.H.; Lim, Y.I.; Cho, C.H.; Bang, Y.H. Hydrodynamics of low-temperature carbonization furnace for production of polyacrylonitrile (PAN)-based carbon fiber. Chem. Eng. Res. Des. 2017, 128, 192–204. [Google Scholar] [CrossRef]
- Duangphet, S.; Szegda, D.; Song, J.; Tarverdi, K. The effect of chain extender on poly(3-hydroxybutyrate-co-3-hydroxyvalerate): Thermal degradation, crystallization, and rheological behaviours. J. Polym. Environ. 2014, 22, 1–8. [Google Scholar] [CrossRef]
- Al-Itry, R.; Lamnawar, K.; Maazouz, A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym. Degrad. Stab. 2012, 97, 1898–1914. [Google Scholar] [CrossRef]
- Frenz, V.; Scherzer, D.; Villalobos, M.; Awojulu, A.; Edison, M.; Van Der Meer, R. Multifunctional polymers as chain extenders and compatibilizers for polycondensates and biopolymers. Technol. Pap. Reg. Technol. Conf. Soc. Plast. 2008, 3, 1678–1682. [Google Scholar]
- Akbari, M.; Zadhoush, A.; Haghighat, M. PET/PP blending by using PP-g-MA synthesized by solid phase. J. Appl. Polym. Sci. 2007, 104, 3986–3993. [Google Scholar] [CrossRef]
- Tariq, A.; Afzal, A.; Rashid, I.A.; Shakir, M.F. Study of thermal, morphological, barrier and viscoelastic properties of PP grafted with maleic anhydride (PP-g-MAH) and PET blends. J. Polym. Res. 2020, 27, 309. [Google Scholar] [CrossRef]
- Skorupska, M.; Kulczyk, M.; Denis, P.; Grzęda, D.; Czajka, A.; Ryszkowska, J. Structural hierarchy of PA6 macromolecules after hydrostatic extrusion. Materials 2023, 16, 3435. [Google Scholar] [CrossRef] [PubMed]
- Chagas, J.D.S.; Silva, N.F.I.; Ueki, M.M.; Medeiros, E.S.D.; Wellen, R.M.R.; Oliveira, M.P.D.; Santos, A.S. Effect of concentration and residence time of Joncryl® ADR4368 on melt processability of poly (3-hydroxybutyrate). J. Renew. Mater. 2024, 12, 2079. [Google Scholar] [CrossRef]
- Ou, B.; Li, D.; Liu, Y. Compatibilizing effect of maleated polypropylene on the mechanical properties of injection molded polypropylene/polyamide 6/functionalized-TiO2 nanocomposites. Compos. Sci. Technol. 2009, 69, 421–426. [Google Scholar] [CrossRef]
- Lafranche, E.; Macedo, S.; Ferreira, P.; Martins, C.I. Thin wall injection-overmoulding of polyamide 6/polypropylene multilayer parts: PA6/PP-g-ma interfacial adhesion investigations. J. Appl. Polym. Sci. 2021, 138, 50294. [Google Scholar] [CrossRef]
- Dayma, N.; Das, D.; Satapathy, B.K. Kinetic and structural interpretations of post-yield crack resistance behavior of polyamide-6/polyolefin-g-maleic anhydride blends. J. Mater. Sci. 2012, 47, 4860–4875. [Google Scholar] [CrossRef]
- Ashraf, J.; Bertin, M.; Verbeek, C.J.R. Plasma-Induced Reactive Compatibilization of Polypropylene/Polyamide 6 Blends. ACS Appl. Polym. Mater. 2025, 7, 641–653. [Google Scholar] [CrossRef]
- Bowen, N.; Guyer, C.; Rippon, T.; Daly, M.; Gao, P.; Galati, V.; Lograsso, S.; Johnston, S.; Masato, D. Mechanical and crystallization properties of hot runner injection molded virgin and recycled polypropylene. Polym. Eng. Sci. 2024, 64, 2241–2255. [Google Scholar] [CrossRef]
- Kaci, M.; Hamma, A.; Pillin, I.; Grohens, Y. Effect of reprocessing cycles on the morphology and properties of poly(propylene)/wood flour composites compatibilized with EBAGMA terpolymer. Macromol. Mater. Eng. 2009, 294, 532–540. [Google Scholar] [CrossRef]
- Xian, J.; Li, M.; Lin, Z.; Deng, S. Crystallization and thermal behavior of recycled polypropylene composites containing nonmetallic printed circuit board powder and β-nucleating agents. J. Therm. Anal. Calorim. 2017, 130, 869–878. [Google Scholar] [CrossRef]
- Sukri, S.M.; Suradi, N.L.; Arsad, A.; Rahmat, A.R.; Hassan, A. Green composites based on recycled polyamide-6/recycled polypropylene kenaf composites: Mechanical, thermal and morphological properties. J. Polym. Eng. 2012, 32, 291–299. [Google Scholar] [CrossRef]
- Othman, N.; Marzuki, N.H.; Din, S.F.M.; Arsad, A.; Yusoff, N.I.S.M.; Wahit, M.U. Rheological behavior of recycled plastics, blends and composites. In Recent Developments in Plastic Recycling; Springer: Singapore, 2021; pp. 193–212. [Google Scholar]
- Berktas, M.E.; Ekinci, A.; Oksuz, M.; Ates, M.; Aydin, I. Influence of nucleating agent on the mechanical and thermal properties of neat isotactic polypropylene/reprocessed polypropylene blends. Iran. Polym. J. 2024, 34, 299–310. [Google Scholar] [CrossRef]
- Baimark, Y.; Srihanam, P. Influence of chain extender on thermal properties and melt flow index of stereocomplex PLA. Polym. Test. 2015, 45, 52–57. [Google Scholar] [CrossRef]
- Cosate De Andrade, M.F.; Fonseca, G.; Morales, A.R.; Mei, L.H.I. Mechanical recycling simulation of polylactide using a chain extender. Adv. Polym. Technol. 2017, 37, 2053–2060. [Google Scholar] [CrossRef]
- Da Silveira, P.H.P.M.; Santos, M.C.C.D.; Chaves, Y.S.; Ribeiro, M.P.; Marchi, B.Z.; Monteiro, S.N.; Gomes, A.V.; Tapanes, N.L.C.O.; Costa Pereire, P.S.; Bastos, D.C. Characterization of thermo-mechanical and chemical properties of polypropylene/hemp fiber biocomposites: Impact of maleic anhydride compatibilizer and fiber content. Polymers 2023, 15, 3271. [Google Scholar] [CrossRef]
- Tasdemir, M.; Karadirek, G. Effect of MAPP on the physical properties of polypropylene/poppy stalks (Papaver somniferum) polymer composite. Afyon Kocatepe Univ. J. Sci. Eng. 2024, 24, 434–440. [Google Scholar]
- Tasdemir, M.; Sen, E.G. Investigation of the effect of waste glass fiber ratio on the physical properties of polypropylene/grape stalk-rice husk polymer composite. Int. J. Adv. Eng. Pure Sci. 2022, 12, 131–140. [Google Scholar]
- Can, S. Improving the Properties of Recycled PET/PEN Blends by Using Different Chain Extenders. Master’s Thesis, Kocaeli University, Kocaeli, Turkey, 2014. [Google Scholar]
- Rahaman, M.; Khastgir, D.; Aldalbahi, A.K. Carbon-Containing Polymer Composites; Springer Series on Polymer and Composite Materials; Springer: Singapore, 2019. [Google Scholar]
- Raju, G.U.; Gaitonde, V.N.; Kumarappa, S. Experimental study on optimization of thermal properties of groundnut shell particle reinforced polymer composites. Int. J. Emerg. Sci. 2012, 2, 433–454. [Google Scholar]
- Palanikumar, K.; Karunamoorthy, L.; Karthikeyan, R. Assessment of factors influencing surface roughness on the machining of glass fiber-reinforced polymer composites. Mater. Des. 2006, 27, 862–871. [Google Scholar] [CrossRef]
- Benaducci, D.; de Oliveira, V.; Tze, W.T.Y.; Hafez, I.; Branciforti, M.C. Nanocomposites of recycled and of virgin polyamide 6.6 with cellulose nanofibers. Hybrid Adv. 2024, 6, 100261. [Google Scholar] [CrossRef]
- Mortazavian, S.; Fatemi, A. Effects of fiber orientation and anisotropy on tensile strength and elastic modulus of short fiber reinforced polymer composites. Compos. Part B Eng. 2015, 72, 116–129. [Google Scholar] [CrossRef]
- Ribeiro, M.C.S.; Nóvoa, P.R.; Ferreira, A.J.M.; Marques, A.T. Flexural performance of polyester and epoxy polymer mortars under severe thermal conditions. Cem. Concr. Compos. 2004, 26, 803–809. [Google Scholar] [CrossRef]
- Yetgin, S.H.; Kus, G.; Koyunbakan, M.; Yildirim, F.; Eskizeybek, V.; Genç, A. Investigation of mechanical properties of multi-walled carbon nanotube doped polyamide 6 polymer. Dicle Univ. Fac. Eng. Eng. J. 2020, 11, 543–551. [Google Scholar]
- Tuna, B. Investigation of effects of a polymeric chain extender on the properties of recycled poly(butylene terephthalate). Bilecik Seyh Edebali Univ. Sci. J. 2021, 8, 882–892. [Google Scholar] [CrossRef]
- Suresha, B.; Ravi Kumar, B.N.; Venkataramareddy, M.; Jayaraju, T. Role of micro/nano fillers on mechanical and tribological properties of polyamide 66/polypropylene composites. Mater. Des. 2010, 31, 1993–2000. [Google Scholar] [CrossRef]
- Hiremath, N.; Evora, M.C.; Naskar, A.K.; Mays, J.; Bhat, G. Polyacrylonitrile nanocomposite fibers from acrylonitrile-grafted carbon nanofibers. Compos. Part B Eng. 2017, 130, 64–69. [Google Scholar] [CrossRef]
- Nishida, M.; Liu, X.; Furuya, S.; Nishida, M.; Takayama, T.; Todo, M. Effect of chain extender on morphology and tensile properties of poly(l-lactic acid)/poly(butylene succinate-co-l-lactate) blends. Mater. Today Commun. 2021, 26, 101852. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, W.; Li, B.; Zhu, J.; Wang, C.; Song, G.; Wu, G.; Yang, X.; Huang, Y.; Ma, L. Recent advances of interphases in carbon fiber-reinforced polymer composites: A review. Compos. Part B Eng. 2022, 233, 109639. [Google Scholar] [CrossRef]
- Zhao, F.; Huang, Y. Grafting of polyhedral oligomeric silsesquioxanes on a carbon fiber surface: Novel coupling agents for fiber/polymer matrix composites. J. Mater. Chem. 2011, 21, 3695–3703. [Google Scholar] [CrossRef]
- Kada, D.; Migneault, S.; Tabak, G.; Koubaa, A. Physical and mechanical properties of polypropylene-wood-carbon fiber hybrid composites. BioResources 2015, 11, 1393–1406. [Google Scholar] [CrossRef]
- Gaaz, T.S.; Sulong, A.B.; Kadhum, A.A.H.; Nassir, M.H.; Al-Amiery, A.A. Absolute variation of the mechanical characteristics of halloysite reinforced polyurethane nanocomposites complemented by Taguchi and ANOVA approaches. Results Phys. 2017, 7, 3287–3300. [Google Scholar] [CrossRef]
- Ghasemi, F.A.; Niyaraki, M.N.; Ghasemi, I.; Daneshpayeh, S. Predicting the tensile strength and elongation at break of PP/graphene/glass fiber/EPDM nanocomposites using response surface methodology. Mech. Adv. Mater. Struct. 2021, 28, 981–989. [Google Scholar] [CrossRef]
- Shakir, D.A.; Abdul-Ameer, F.M. Effect of nano-titanium oxide addition on some mechanical properties of silicone elastomers for maxillofacial prostheses. J. Taibah Univ. Med. Sci. 2018, 13, 281–290. [Google Scholar] [CrossRef]
- Naranjo-Lozada, J.; Ahuett-Garza, H.; Orta-Castañón, P.; Verbeeten, W.M.; Sáiz-González, D. Tensile properties and failure behavior of chopped and continuous carbon fiber composites produced by additive manufacturing. Addit. Manuf. 2019, 26, 227–241. [Google Scholar] [CrossRef]
- Kargar, E.; Ghasemi-Ghalebahman, A. Experimental investigation on fatigue life and tensile strength of carbon fiber-reinforced PLA composites based on fused deposition modeling. Sci. Rep. 2023, 13, 18194. [Google Scholar] [CrossRef]
- Herrera-Franco, P.; Valadez-Gonzalez, A. A study of the mechanical properties of short natural-fiber reinforced composites. Compos. Part B Eng. 2005, 36, 597–608. [Google Scholar] [CrossRef]
- Utracki, L.A.; Wilkie, C.A. Polymer Blends Handbook; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Ivancic, R.J.S.; Audus, D.J. Predicting compatibilized polymer blend toughness. Sci. Adv. 2024, 10, eadk6165. [Google Scholar] [CrossRef] [PubMed]
- Tejada-Oliveros, R.; Balart, R.; Ivorra-Martinez, J.; Gomez-Caturla, J.; Montanes, N.; Quiles Carrillo, L. Improvement of impact strength of polylactide blends with a thermoplastic elastomer compatibilized with biobased maleinized linseed oil for applications in rigid packaging. Molecules 2021, 26, 240. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, Y.; Wang, K.; Xia, Y.; Gao, H.; Luo, K.; Cao, Z.; Qi, J. Effect of the trifunctional chain extender on intrinsic viscosity, crystallization behavior, and mechanical properties of poly(ethylene terephthalate). ACS Omega 2020, 5, 19247–19254. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhao, Y.; Ge, H.; Qian, R. Enhanced mechanical and thermal properties of short carbon fiber reinforced polypropylene composites by graphene oxide. Polym. Compos. 2018, 39, 405–413. [Google Scholar] [CrossRef]
- Annandarajah, C. Manufacture and Characterization of Natural Fiber Biocomposites for Automotive Application. Doctoral Dissertation, Iowa State University, Ames, IA, USA, 2020. [Google Scholar]
- Madhusudhana, H.K.; Kumar, M.P.; Patil, A.Y.; Keshavamurthy, R.; Khan, T.Y.; Badruddin, I.A.; Kamangar, S. Analysis of the effect of parameters on fracture toughness of hemp fiber reinforced hybrid composites using the ANOVA method. Polymers 2021, 13, 3013. [Google Scholar] [CrossRef] [PubMed]
- Vieille, B.; Casado, V.M.; Bouvet, C. Influence of matrix toughness and ductility on the compression-after-impact behavior of woven-ply thermoplastic-and thermosetting-composites: A comparative study. Compos. Struct. 2014, 110, 207–218. [Google Scholar] [CrossRef]
- Haghdan, S. Energy Absorbing Ability of Wood/Polyester Composite Laminates. Doctoral Dissertation, University of British Columbia, Vancouver, BC, Canada, 2015. [Google Scholar]
- Ataberk Savas, L.; Uzunoglu, Y.; Savas, S. Effect of bone ash and compatibilizer on the mechanical properties of PP/PA6 matrix composites. Int. J. Innov. Eng. Appl. 2020, 6, 118–128. [Google Scholar]
- Korkees, F.; Aldrees, A.; Barsoum, I.; Alshammari, D. Functionalized graphene's effect on the mechanical and thermal properties of recycled PA6/PA6,6 blends. J. Compos. Mater. 2021, 55, 2211–2224. [Google Scholar] [CrossRef]
- Satheeskumar, S.; Kanagaraj, G. Experimental investigation of the tribological behaviors of PA6, PA6-reinforced Al2O3, and PA6-reinforced graphite polymer composites. Bull. Mater. Sci. 2016, 39, 1467–1481. [Google Scholar] [CrossRef]
- Titus, R.; Satpathy, M.; Mecholsky, J.J.; Jodha, K.S.; Abdulhameed, N.; Griggs, J.A. Determination of elastic moduli of polymeric materials using microhardness indentation. J. Mech. Behav. Biomed. Mater. 2024, 160, 106713. [Google Scholar] [CrossRef]
- Alshabib, A.; Silikas, N.; Watts, D.C. Hardness and fracture toughness of resin-composite materials with and without fibers. Dent. Mater. 2019, 35, 1194–1203. [Google Scholar] [CrossRef] [PubMed]
- Chortarea, S.; Kuru, O.C.; Netkueakul, W.; Pelin, M.; Keshavan, S.; Song, Z.; Wick, P. Hazard assessment of abraded thermoplastic composites reinforced with reduced graphene oxide. J. Hazard. Mater. 2022, 435, 129053. [Google Scholar] [CrossRef] [PubMed]
- Emera, R.; Elgamal, M.; Albadwei, M. Surface wear of all zirconia, all PEEK, and zirconia-PEEK telescopic attachments for two implants retained mandibular complete overdentures: In vitro study using scanning electron microscope. IOSR J. Dent. Med. Sci. 2019, 18, 59–68. [Google Scholar]
- Kuram, E.; Tasci, E.; Altan, A.I.; Medar, M.M.; Yilmaz, F.; Ozcelik, B. Investigating the effects of recycling number and injection parameters on the mechanical properties of glass-fiber reinforced nylon 6 using Taguchi method. Mater. Des. 2013, 49, 139–150. [Google Scholar] [CrossRef]
Sample | rPA6 | CE | |||
---|---|---|---|---|---|
rPA6 | 100 | - | |||
0.2CE-rPA6 | 99.8 | 0.2 | |||
0.5CE-rPA6 | 99.5 | 0.5 | |||
0.75CE-rPA6 | 99.25 | 0.75 | |||
rPA6 | CE | rPP | PP-g-MA | CF | |
Group 1 | 100 | - | - | - | - |
Group 2 | 70 | - | 30 | - | - |
Group 3 | 67.5 | - | 30 | 2.5 | - |
Group 4 | 67.5 (99.8 + 0.2) | 30 | 2.5 | - | |
Group 5 | 90 (67.5 + 30 + 2.5) | 10 | |||
Group 6 | 80 (67.5 + 30 + 2.5) | 20 |
Sample | Tm (°C) | Tc (°C) |
---|---|---|
(a) rPA | 260.9/163.1 | 234.3/106.1 |
(b) rPA6 + PP-g-MA 2.5 | 259.79/163.19 | 229.16/115.71 |
(c) 0.2CE+rPA6 +PP-g-MA 2.5 | 260.95/162.07 | 229.72/108.70 |
(d) 0.2CE+rPA6 | 259.99/161.47 | 230.62/101.95 |
(e) 0.5CE+rPA6 | 259.88/162.06 | 230.37/109.37 |
(f) 0.75CE+rPA6 | 258.73/160.20 | 230.85/109.75 |
Sample/Parameters | Mw (g/mol) | MFI (g/10 min) |
---|---|---|
rPA6 | 11.5 | 102.9 |
0.2CE+rPA6 | 22.3 | 30.1 |
0.5CE+rPA6 | 11.0 | 22.4 |
0.75CE+rPA6 | 7.5 | 7.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ergun, N.; Oksuz, M.; Ekinci, A. Enhancing Mechanical and Thermal Performance of Recycled PA6/PP Blends: Chain Extension and Carbon Fiber Reinforcement Synergy. Materials 2025, 18, 1027. https://doi.org/10.3390/ma18051027
Ergun N, Oksuz M, Ekinci A. Enhancing Mechanical and Thermal Performance of Recycled PA6/PP Blends: Chain Extension and Carbon Fiber Reinforcement Synergy. Materials. 2025; 18(5):1027. https://doi.org/10.3390/ma18051027
Chicago/Turabian StyleErgun, Neslihan, Mustafa Oksuz, and Aysun Ekinci. 2025. "Enhancing Mechanical and Thermal Performance of Recycled PA6/PP Blends: Chain Extension and Carbon Fiber Reinforcement Synergy" Materials 18, no. 5: 1027. https://doi.org/10.3390/ma18051027
APA StyleErgun, N., Oksuz, M., & Ekinci, A. (2025). Enhancing Mechanical and Thermal Performance of Recycled PA6/PP Blends: Chain Extension and Carbon Fiber Reinforcement Synergy. Materials, 18(5), 1027. https://doi.org/10.3390/ma18051027