Green Technique for Producing Carbon-Based Catalysts for Cellulose Hydrolysis
Abstract
1. Introduction
2. Experimental Section
2.1. Materials and Sulfonation Procedures
2.2. Characterization
2.3. Catalytic Performance Evaluation
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hara, M. Biomass Conversion by a Solid Acid Catalyst. Energy Environ. Sci. 2010, 3, 601–607. [Google Scholar] [CrossRef]
- Toda, M.; Takagaki, A.; Okamura, M.; Kondo, J.N.; Hayashi, S.; Domen, K.; Hara, M. Biodiesel Made with Sugar Catalyst. Nature 2005, 438, 178. [Google Scholar] [CrossRef]
- Suganuma, S.; Nakajima, K.; Kitano, M.; Yamaguchi, D.; Kato, H.; Hayashi, S.; Hara, M. Hydrolysis of Cellulose by Amorphous Carbon Bearing SO3H, COOH, and OH Groups. J. Am. Chem. Soc. 2008, 130, 12787–12793. [Google Scholar] [CrossRef] [PubMed]
- Hara, M.; Yoshida, T.; Takagaki, A.; Takata, T.; Kondo, J.N.; Hayashi, S.; Domen, K. A Carbon Material as a Strong Protonic Acid. Angew. Chem. Int. Ed. 2004, 43, 2955–2958. [Google Scholar] [CrossRef]
- Mo, X.; Lotero, E.; Lu, C.; Liu, Y.; Goodwin, J.G. A Novel Sulfonated Carbon Composite Solid Acid Catalyst for Biodiesel Synthesis. Catal. Lett. 2008, 123, 1–6. [Google Scholar] [CrossRef]
- Nata, I.F.; Putra, M.D.; Irawan, C.; Lee, C.-K. Catalytic Performance of Sulfonated Carbon-Based Solid Acid Catalyst on Esterification of Waste Cooking Oil for Biodiesel Production. J. Environ. Chem. Eng. 2017, 5, 2171–2175. [Google Scholar] [CrossRef]
- Huang, Y.-B.; Fu, Y. Hydrolysis of Cellulose to Glucose by Solid Acid Catalysts. Green Chem. 2013, 15, 1095–1111. [Google Scholar] [CrossRef]
- Ngaosuwan, K.; Goodwin, J.G.; Prasertdham, P. A Green Sulfonated Carbon-Based Catalyst Derived from Coffee Residue for Esterification. Renew. Energy 2016, 86, 262–269. [Google Scholar] [CrossRef]
- Onda, A.; Ochi, T.; Yanagisawa, K. Selective Hydrolysis of Cellulose into Glucose over Solid Acid Catalysts. Green Chem. 2008, 10, 1033–1037. [Google Scholar] [CrossRef]
- Kang, S.; Zhang, G.; Yang, X.; Yin, H.; Fu, X.; Liao, J.; Tu, J.; Huang, X.; Qin, F.G.F.; Xu, Y. Effects of P-Toluenesulfonic Acid in the Conversion of Glucose for Levulinic Acid and Sulfonated Carbon Production. Energy Fuels 2017, 31, 2847–2854. [Google Scholar] [CrossRef]
- Shen, F.; Guo, T.; Bai, C.; Qiu, M.; Qi, X. Hydrolysis of Cellulose with One-Pot Synthesized Sulfonated Carbonaceous Solid Acid. Fuel Process. Technol. 2018, 169, 244–247. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Bell, A.T. Direct Sulfonation of Methane to Methanesulfonic Acid with SO2 Using Ca Salts as Promoters. J. Am. Chem. Soc. 2003, 125, 4406–4407. [Google Scholar] [CrossRef]
- Qin, L.; Ishizaki, T.; Takeuchi, N.; Takahashi, K.; Kim, K.H.; Li, O.L. Green Sulfonation of Carbon Catalysts via Gas–Liquid Interfacial Plasma for Cellulose Hydrolysis. ACS Sustain. Chem. Eng. 2020, 8, 5837–5846. [Google Scholar] [CrossRef]
- Li, O.L.; Ikura, R.; Ishizaki, T. Hydrolysis of Cellulose to Glucose over Carbon Catalysts Sulfonated via a Plasma Process in Dilute Acids. Green Chem. 2017, 19, 4774–4777. [Google Scholar] [CrossRef]
- Zeng, M.; Pan, X. Insights into Solid Acid Catalysts for Efficient Cellulose Hydrolysis to Glucose: Progress, Challenges, and Future Opportunities. Catal. Rev. 2022, 64, 445–490. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of Persulfate (PS) and Peroxymonosulfate (PMS) and Application for the Degradation of Emerging Contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Yang, S.; Wang, P.; Yang, X.; Shan, L.; Zhang, W.; Shao, X.; Niu, R. Degradation Efficiencies of Azo Dye Acid Orange 7 by the Interaction of Heat, UV and Anions with Common Oxidants: Persulfate, Peroxymonosulfate and Hydrogen Peroxide. J. Hazard. Mater. 2010, 179, 552–558. [Google Scholar] [CrossRef]
- Manz, K.E.; Kulaots, I.; Greenley, C.A.; Landry, P.J.; Lakshmi, K.V.; Woodcock, M.J.; Hellerich, L.; Bryant, J.D.; Apfelbaum, M.; Pennell, K.D. Low-Temperature Persulfate Activation by Powdered Activated Carbon for Simultaneous Destruction of Perfluorinated Carboxylic Acids and 1,4-Dioxane. J. Hazard. Mater. 2023, 442, 129966. [Google Scholar] [CrossRef] [PubMed]
- Ran, G.; Li, Q. Degradation of Refractory Organic Compounds from Dinitrodiazophenol Containing Industrial Wastewater through UV/H2O2 and UV/PS Processes. Environ. Sci. Pollut. Res. 2020, 27, 6042–6051. [Google Scholar] [CrossRef]
- Kwong, K.C.; Chim, M.M.; Davies, J.F.; Wilson, K.R.; Chan, M.N. Importance of Sulfate Radical Anion Formation and Chemistry in Heterogeneous OH Oxidation of Sodium Methyl Sulfate, the Smallest Organosulfate. Atmos. Chem. Phys. 2018, 18, 2809–2820. [Google Scholar] [CrossRef]
- Fiorati, A.; Gambarotti, C.; Melone, L.; Pastori, N.; Punta, C.; Raffaini, G.; Truscello, A. Recent Advances in Photocatalytic Minisci Reaction: An Eco-Friendly Functionalization of Biologically Relevant Heteroarenes. In Green Synthetic Approaches for Biologically Relevant Heterocycles, 2nd ed.; Brahmachari, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 189–206. ISBN 978-0-12-820586-0. [Google Scholar]
- Ahmed, M.S.; Jeon, S. Electrochemical Activity Evaluation of Chemically Damaged Carbon Nanotube with Palladium Nanoparticles for Ethanol Oxidation. J. Power Sources 2015, 282, 479–488. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Tan, M.; Jiang, B.; Zheng, J.; Tsubaki, N.; Wu, M. Monodispersed Hollow SO3H-Functionalized Carbon/Silica as Efficient Solid Acid Catalyst for Esterification of Oleic Acid. ACS Appl. Mater. Interfaces 2015, 7, 26767–26775. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, X.; Cao, Y.; Li, X.; Li, D.; Sun, X.; Gu, H.; Wan, R. Enhancement of Interaction of L-929 Cells with Functionalized Graphene via COOH+ Ion Implantation vs. Chemical Method. Sci. Rep. 2016, 6, 37112. [Google Scholar] [CrossRef]
- Okpalugo, T.I.T.; Papakonstantinou, P.; Murphy, H.; McLaughlin, J.; Brown, N.M.D. High Resolution XPS Characterization of Chemical Functionalised MWCNTs and SWCNTs. Carbon 2005, 43, 153–161. [Google Scholar] [CrossRef]
- Ahammad, A.J.S.; Odhikari, N.; Shah, S.S.; Hasan, M.M.; Islam, T.; Pal, P.R.; Qasem, M.A.A.; Aziz, M.A. Porous Tal Palm Carbon Nanosheets: Preparation, Characterization and Application for the Simultaneous Determination of Dopamine and Uric Acid. Nanoscale Adv. 2019, 1, 613–626. [Google Scholar] [CrossRef]
- Meng, F.; Song, M.; Wei, Y.; Wang, Y. The Contribution of Oxygen-Containing Functional Groups to the Gas-Phase Adsorption of Volatile Organic Compounds with Different Polarities onto Lignin-Derived Activated Carbon Fibers. Environ. Sci. Pollut. Res. 2019, 26, 7195–7204. [Google Scholar] [CrossRef] [PubMed]
- Araújo, T.; Parnell, A.J.; Bernardo, G.; Mendes, A. Cellulose-Based Carbon Membranes for Gas Separations—Unraveling Structural Parameters and Surface Chemistry for Superior Separation Performance. Carbon 2023, 204, 398–410. [Google Scholar] [CrossRef]
- Ulaganathan, M.; Aravindan, V.; Yan, Q.; Madhavi, S.; Skyllas-Kazacos, M.; Lim, T.M. Recent Advancements in All-Vanadium Redox Flow Batteries. Adv. Mater. Interfaces 2016, 3, 1500309. [Google Scholar] [CrossRef]
- Vi Tran, T.T.; Kongparakul, S.; Reubroycharoen, P.; Guan, G.; Nguyen, M.H.; Chanlek, N.; Samart, C. Production of Furan Based Biofuel with an Environmental Benign Carbon Catalyst. Environ. Prog. Sustain. Energy 2018, 37, 1455–1461. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Xie, X.; Huang, C.; Yang, S. Dehydration of Fructose, Sucrose and Inulin to 5-Hydroxymethylfurfural over Yeast-Derived Carbonaceous Microspheres at Low Temperatures. RSC Adv. 2019, 9, 9041–9048. [Google Scholar] [CrossRef]
- Yadav, N.; Yadav, G.; Ahmaruzzaman, M. Microwave-Assisted Biodiesel Production Using –SO3H Functionalized Heterogeneous Catalyst Derived from a Lignin-Rich Biomass. Sci. Rep. 2023, 13, 9074. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Guo, H.; Li, L.; Smith, R.L., Jr. Acid-Catalyzed Dehydration of Fructose into 5-Hydroxymethylfurfural by Cellulose-Derived Amorphous Carbon. ChemSusChem 2012, 5, 2215–2220. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Wang, A.; Zheng, M.; Zhang, T. Hydrolysis of Cellulose into Glucose over Carbons Sulfonated at Elevated Temperatures. Chem. Commun. 2010, 46, 6935–6937. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.-Y.; Katsumura, Y.; Nagaishi, R.; Domae, M.; Ishikawa, K.; Ishigure, K.; Yoshida, Y. Pulse Radiolysis Study of Concentrated Sulfuric Acid Solutions. Formation Mechanism, Yield and Reactivity of Sulfate Radicals. J. Chem. Soc. Faraday Trans. 1992, 88, 1653–1658. [Google Scholar] [CrossRef]
- Tang, Y.; Thorn, R.P.; Mauldin, R.L.; Wine, P.H. Kinetics and Spectroscopy of the SO4− Radical in Aqueous Solution. J. Photochem. Photobiol. A Chem. 1988, 44, 243–258. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, L.; Xia, B.; Zhang, Y.; Fu, J. Oxidization of Carbon Nanotubes through Hydroxyl Radical Induced by Pulsed O2 Plasma and Its Application for O2 Reduction in Electro-Fenton. Electrochim. Acta 2009, 54, 2810–2817. [Google Scholar] [CrossRef]
- Waldow, A.; Schmidt, B.; Dierks, T.; von Bülow, R.; von Figura, K. Amino Acid Residues Forming the Active Site of Arylsulfatase A: ROLE IN CATALYTIC ACTIVITY AND SUBSTRATE BINDING*. J. Biol. Chem. 1999, 274, 12284–12288. [Google Scholar] [CrossRef]
- Corrêa, A.P.d.L.; Cardoso Bastos, R.R.; Filho, G.N.d.R.; Roberto Zamian, J.; da Conceição, L.R.V. Preparation of Sulfonated Carbon-Based Catalysts from Murumuru Kernel Shell and Their Performance in the Esterification Reaction. RSC Adv. 2020, 10, 20245–20256. [Google Scholar] [CrossRef]
- Knauth, P.; Hou, H.; Bloch, E.; Sgreccia, E.; Di Vona, M.L. Thermogravimetric Analysis of SPEEK Membranes: Thermal Stability, Degree of Sulfonation and Cross-Linking Reaction. J. Anal. Appl. Pyrolysis 2011, 92, 361–365. [Google Scholar] [CrossRef]
- Rinaldi, R.; Palkovits, R.; Schüth, F. Depolymerization of Cellulose Using Solid Catalysts in Ionic Liquids. Angew. Chem. Int. Ed. 2008, 47, 8047–8050. [Google Scholar] [CrossRef]
- Lai, D.; Deng, L.; Li, J.; Liao, B.; Guo, Q.; Fu, Y. Hydrolysis of Cellulose into Glucose by Magnetic Solid Acid. ChemSusChem 2011, 4, 55–58. [Google Scholar] [CrossRef] [PubMed]






| Na2S2O8 Concentration (mol/L). | Treatment Time (min) | Solution Temperature (°C) | CNTs Mass (mg) | Solution Volume (mL) |
|---|---|---|---|---|
| 0.1/0.25/0.5 | 10/20/45 | 20 | 300 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, S.; Yao, K.; Kodama, M.; Li, O.L.; Takeuchi, N. Green Technique for Producing Carbon-Based Catalysts for Cellulose Hydrolysis. Materials 2025, 18, 5031. https://doi.org/10.3390/ma18215031
Deng S, Yao K, Kodama M, Li OL, Takeuchi N. Green Technique for Producing Carbon-Based Catalysts for Cellulose Hydrolysis. Materials. 2025; 18(21):5031. https://doi.org/10.3390/ma18215031
Chicago/Turabian StyleDeng, Siqi, Kaixun Yao, Manabu Kodama, Oi Lun Li, and Nozomi Takeuchi. 2025. "Green Technique for Producing Carbon-Based Catalysts for Cellulose Hydrolysis" Materials 18, no. 21: 5031. https://doi.org/10.3390/ma18215031
APA StyleDeng, S., Yao, K., Kodama, M., Li, O. L., & Takeuchi, N. (2025). Green Technique for Producing Carbon-Based Catalysts for Cellulose Hydrolysis. Materials, 18(21), 5031. https://doi.org/10.3390/ma18215031

