Ag Microparticle/Au Nanoparticle Thermal Interface Materials Sintered at Low Temperature and Pressure
Highlights
- Silver- and gold-based thermal interface materials (TIMs) are made by low-temperature sintering, where nearly all investigated materials demonstrated a mechanical strength higher than the 6 MPa required by the military standards (MIL-STD-883K);
- A beneficial impact of increased sintering temperature on the mechanical parameters of the sintered joints was observed, but it also resulted in a significant increase in the material’s thermal resistance.
- Materials composition requires further research in order to improve thermal performance, where mechanical parameters are satisfactory.
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Methods
3. Results
3.1. Gold and Silver Morphology
3.2. TIM Layer Morphology
3.3. Thermal Analysis
3.4. Mechanical Analysis
3.5. Comparative Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| TIM | Thermal interface material |
| MIL-STD | Military standard |
| LC | Low concentration |
| HC | High concentration |
| PVP | Polyvinylpyrrolidone |
| FR-4 | Flame Retardant 4 |
| HRTEM | High-resolution transmission electron microscopy |
| TGA | Thermogravimetry |
| SEM | Scanning electron microscopy |
References
- Tummala, R.R. Moore’s Law for Packaging to Replace Moore’s Law for ICS. In 2019 Pan Pacific Microelectronics Symposium (Pan Pacific); IEEE: Kauai, HI, USA, 2019; pp. 1–6. [Google Scholar]
- Li, Y.; Goyal, D. (Eds.) 3D Microelectronic Packaging: From Architectures to Applications; Springer Series in Advanced Microelectronics; Springer: Singapore, 2021; ISBN 978-981-15-7089-6. [Google Scholar]
- Bar-Cohen, A.; Watwe, A.; Kankanhally, N. Seetharamu Fun-Damentals of Thermal Management. In Fundamentals of Microsystems Packaging; McGraw-Hill Education: New York, NY, USA, 2001; ISBN 978-0-07-137169-8. [Google Scholar]
- Stojek, K.; Płatek, B.; Fałat, T.; Felba, J.; Matkowski, P.; Mościcki, A. The Method of Measuring the Efficiency of Heat Transfer through Thermal Interface Materials in Microelectronics Packaging. In Proceedings of the 2015 38th International Spring Seminar on Electronics Technology (ISSE), Eger, Hungary, 6 May 2015; pp. 97–102. [Google Scholar]
- Wang, F.F. Electronics Packaging Simplified Radiation Heat Transfer Analysis Method. In The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (IEEE Cat. No.04CH37543); IEEE: Las Vegas, NV, USA; pp. 613–617.
- Çengel, Y.A. Heat Transfer: A Practical Approach; McGaw-Hill Series in Mechanical Engineering; McGraw-Hill Education: New York, NY, USA, 2004; ISBN 978-0-07-123644-7. [Google Scholar]
- Andreev, V.K.; Gaponenko, Y.A.; Goncharova, O.N.; Pukhnachev, V.V. Mathematical Models of Convection; De Gruyter: Berlin, Germany, 2020; ISBN 978-3-11-065546-9. [Google Scholar]
- Wei, B.; Luo, W.; Du, J.; Ding, Y.; Guo, Y.; Zhu, G.; Zhu, Y.; Li, B. Thermal Interface Materials: From Fundamental Research to Applications. SusMat 2024, 4, e239. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, S.; Li, T. Progress and Prospective of Thermal Interface Materials for Thermal Management. IET Smart Energy Syst. 2025, 1, 42–55. [Google Scholar] [CrossRef]
- Tu, Y.; Liu, B.; Yao, G.; Luo, H.; Jia, X.; Du, J.; Xu, C. A Review of Advanced Thermal Interface Materials with Oriented Structures for Electronic Devices. Electronics 2024, 13, 4287. [Google Scholar] [CrossRef]
- Skuriat, R.; Li, J.F.; Agyakwa, P.A.; Mattey, N.; Evans, P.; Johnson, C.M. Degradation of Thermal Interface Materials for High-Temperature Power Electronics Applications. Microelectron. Reliab. 2013, 53, 1933–1942. [Google Scholar] [CrossRef]
- Gowda, A.; Zhong, A.; Tonapi, S.; Nagarkar, K.; Srihari, K. Thermal and Mechanical Properties of Silicone Thermal Interface Materials with Varying Cross-Link Densities. In Proceedings of the InterPACK2005, San Francisco, CA, USA, 17–22 July 2005; Advances in Electronic Packaging, Parts A, B, and C. pp. 1911–1918. [Google Scholar]
- Deng, M.; Xu, Y.; Gao, K.; Zhao, C.; Sheng, N.; Zhu, C.; Rao, Z. A Graphene Nanoflake-Based Flexible Composite Phase Change Material for Enhanced Heat Dissipation in Chip Cooling. Appl. Therm. Eng. 2024, 245, 122908. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, E.; Zhang, M. A New Thermal Interface Material: Graphene-Epoxy Composite Used for LED Heat Dissipation. Chiang Mai J. Sci. 2018, 45, 2459–2470. [Google Scholar]
- Stojek, K.J.; Felba, J.; Nowak, D.; Malecha, K.; Kaczmarek, S.; Andrzejak, P.T.T. Thermal and Mechanical Analysis of Low-Temperature and Low-Pressure Silver-Based Sintered Thermal Joints. Solder. Surf. Mt. Technol. 2023, 35, 9–17. [Google Scholar] [CrossRef]
- Stojek, K.J.; Felba, J.; Nicolics, J.; Wołczyński, D. Impact of Convection on Thermo-graphic Analysis of Silver Based Thermal Joints. Solder. Surf. Mt. Technol. 2020, 32, 241–246. [Google Scholar] [CrossRef]
- Hecold, M.; Buczkowska, R.; Mucha, A.; Grzesiak, J.; Rac-Rumijowska, O.; Teterycz, H.; Marycz, K. The Effect of PEI and PVP-Stabilized Gold Nanoparticles on Equine Plate-lets Activation: Potential Application in Equine Regenerative Medicine. J. Nano-Mater. 2017, 2017, 1–11. [Google Scholar] [CrossRef]
- Suchorska-Woźniak, P.; Rac, O.; Klimkiewicz, R.; Fiedot, M.; Teterycz, H. Dehydro-genation Properties of ZnO and the Impact of Gold Nanoparticles on the Process. Appl. Catal. A Gen. 2016, 514, 135–145. [Google Scholar] [CrossRef]
- Rac-Rumijowska, O.; Fiedot, M.; Suchorska-Wozniak, P.; Teterycz, H. Synthesis of Gold Nanoparticles with Different Kinds of Stabilizing Agents. In Proceedings of the 2017 40th International Spring Seminar on Electronics Technology (ISSE), Sofia, Bulgaria, 10–14 May 2017; IEEE: Piscataway, NJ, USA; pp. 1–6. [Google Scholar]
- Matkowski, P.K.; Falat, T.; Moscicki, A. Volume 2: Advanced Electronics and Photonics, Packaging Materials and Processing; Advanced Electronics and Photonics: Packaging, Interconnect and Reliability; Fundamentals of Thermal and Fluid Transport in Nano, Micro, and Mini Scales. In Reliability of Interconnections Made of Sintered Silver Nano Particles, Proceedings of the Integration of Electronic and Photonic Microsystems Collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, San Francisco, CA, USA, 6–9 July 2015; American Society of Mechanical Engineers: New York, NY, USA, 2015. [Google Scholar]
- Matkowski, P.K.; Fałat, T.; Mościcki, A. Reliability Testing of Electrically Conductive Joints Made of Sintered Nano Silver. In Proceedings of the 5th Electronics System-integration Technology Conference (ESTC), Helsinki, Finland, 16–18 September 2014; pp. 1–6. [Google Scholar]
- Hajakbari, F.; Ensandoust, M. Study of Thermal Annealing Effect on the Properties of Silver Thin Films Prepared by DC Magnetron Sputtering. Acta Phys. Pol. A 2016, 129, 680–682. [Google Scholar] [CrossRef]
- Stojek, K.; Felba, J.; Lizanets, D.; Kiliszkiewicz, M.; Falat, T.; Gorzka, K. Defects Investigation in Low-Temperature and Low-Pressure Sintered Silver Thermal Joints for Non-Metalized Semiconductors. In Proceedings of the 2019 42nd International Spring Seminar on Electronics Technology (ISSE), Wroclaw, Poland, 15–19 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- MIL-STD-883K; Microcircuits. Defense Logistics Agency: Columbus, OH, USA, 2019.
- Höganäs A.B. Hoganas Handbook for Sintered Components: Material and Powder Properties. 1997. Available online: https://www.hoganas.com/en/services/handbooks/ (accessed on 20 October 2025).
- Bai, G. Low-Temperature Sintering of Nanoscale Silver Paste for Semiconductor Device Interconnection. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2005. [Google Scholar]
- White, G.K. The Thermal Conductivity of Gold at Low Temperatures. Proc. Phys. Soc. Sect. A 1953, 66, 559. [Google Scholar] [CrossRef]
- Yang, L.; Gan, Y.; Zhang, Y.; Chen, J.K. Molecular Dynamics Simulation of Neck Growth in Laser Sintering of Different-Sized Gold Nanoparticles under Different Heating Rates. Appl. Phys. A 2012, 106, 725–735. [Google Scholar] [CrossRef]
- Felba, J. Technological Aspects of Silver Particle Sintering for Electronic Packaging. Circuit World 2018, 44, 2–15. [Google Scholar] [CrossRef]
- Kang, S.-J.L. (Ed.) Sintering: Densification, Grain Growth, and Microstructure; Butterworth-Heinemann: Oxford, UK, 2005; ISBN 978-0-7506-6385-4. [Google Scholar]
- Al-Qudsi, A.; Kammler, M.; Bouguecha, A.; Bonk, C.; Behrens, B.-A. Comparison be-tween Different Numerical Models of Densification during Solid-State Sintering of Pure Aluminium Powder. Prod. Eng. Res. Devel. 2015, 9, 11–24. [Google Scholar] [CrossRef]
- Fang, Z.Z.; German, R.M.; Rahaman, M.N.; DeHoff, R.T.; Niu, W.; Pan, J.; Kang, S.-J.L.; DiAntonio, C.B.; Ewsuk, K.G.; Blais, C.; et al. Sintering of Advanced Materials; Fang, Z.Z., Ed.; Woodhead Publishing: Cambridge, UK, 2010; ISBN 978-1-84569-562-0. [Google Scholar]
- Swamy, M.C.K. Satyanarayan A Review of the Performance and Characterization of Conventional and Promising Thermal Interface Materials for Electronic Package Applications. J. Electron. Mater. 2019, 48, 7623–7634. [Google Scholar] [CrossRef]
- Khuu, V.; Osterman, M.; Bar-Cohen, A.; Pecht, M. Effects of Temperature Cycling and Elevated Temperature/Humidity on the Thermal Performance of Thermal Interface Materials. IEEE Trans. Device Mater. Relib. 2009, 9, 379–391. [Google Scholar] [CrossRef]
- Maguire, L.; Behnia, M.; Morrison, G. Systematic Evaluation of Thermal Interface Materials—A Case Study in High Power Amplifier Design. Microelectron. Reliab. 2005, 45, 711–725. [Google Scholar] [CrossRef]












| Material | I [A] | P [W] | U [V] | t [min] | FL [sccm] | p [mbar] |
|---|---|---|---|---|---|---|
| Ag | 0.3 | 290 | 960 | 4 | 5 | 3.2 × 10−3 |
| Sample Composition | Metal Particles | Solvent | Notes | ||
|---|---|---|---|---|---|
| Silver Microparticles | Gold Nanoparticles | Polyethylene Glycol | Ethyl Alcohol | ||
| Sample Description | Weight Ratio | ||||
| 2:1 LC | 2 | 0.01 | 7 | 5 | LC—low concentration of metal particles |
| 2:2 LC | 2 | 0.02 | |||
| 2:3 LC | 2 | 0.03 | |||
| 2:1 HC | 2 | 0.01 | 3 | 2 | HC—high concentration of metal particles |
| 2:2 HC | 2 | 0.02 | |||
| 2:3 HC | 2 | 0.03 | |||
| Sample No. | Voltage | Current | Power | Source Temperature | Receiver Temperature | Temperature Difference | Thermal Resistance |
|---|---|---|---|---|---|---|---|
| U [V] | I [A] | P [W] | TS [K] | TR [K] | ΔT [K] | ||
| 2:1 LC | 0.33 | 6.35 | 2.11 | 372.50 | 371.70 | 0.80 | 0.38 |
| 2:2 LC | 0.32 | 6.28 | 2.02 | 369.00 | 367.00 | 2.00 | 0.99 |
| 2:3 LC | 0.36 | 6.13 | 2.20 | 372.20 | 369.70 | 2.50 | 1.14 |
| 2:1 HC | 0.42 | 5.31 | 2.25 | 371.80 | 369.80 | 2.00 | 0.89 |
| 2:2 HC | 0.20 | 6.48 | 1.29 | 373.20 | 371.20 | 2.00 | 1.55 |
| 2:3 HC | 0.19 | 6.47 | 1.21 | 373.30 | 371.30 | 2.00 | 1.65 |
| 2:3 HC | 0.33 | 4.37 | 1.43 | 372.80 | 369.80 | 3.00 | 2.09 |
| Shear Strength [MPa] | Thermal Resistance [] | ‘s’ Parameter [] | |
|---|---|---|---|
| 2:1 LC | 6.01 | 0.38 | 15.83 |
| 2:2 LC | 8.14 | 0.99 | 8.24 |
| 2:3 LC | 5.95 | 1.14 | 5.24 |
| 2:1 HC | 6.74 | 0.89 | 7.59 |
| 2:2 HC | 7.01 | 1.55 | 4.51 |
| 2:3 HC | 5.87 | 1.65 | 3.54 |
| 2:3 HC300 | 11.9 | 2.09 | 5.69 |
| TIM Type | Thermal Resistance | References |
|---|---|---|
| Adhesives | 0.256 K/W (16.4 mm × 16.4 mm), 69 mm2 K/W | [33,34] |
| Gels | 0.134 K/W (16.4 mm × 16.4 mm), 36 mm2 K/W | [34] |
| Thermal grease | 0.121–0.252 K/W | [35] |
| Gap pad | 0.480–0.668 K/W | [35] |
| Phase change materials | 0.192–0.209 K/W | [35] |
| Epoxy based micro- and nano-silver TIM | 1.3–10.26 K/W | [4] |
| 2:1 LC | 0.38 K/W | Presented paper |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojek, K.; Nowak, A.K.; Rac-Rumijowska, O.; Czok, M.; Nowak, D.; Matkowski, P. Ag Microparticle/Au Nanoparticle Thermal Interface Materials Sintered at Low Temperature and Pressure. Materials 2025, 18, 4981. https://doi.org/10.3390/ma18214981
Stojek K, Nowak AK, Rac-Rumijowska O, Czok M, Nowak D, Matkowski P. Ag Microparticle/Au Nanoparticle Thermal Interface Materials Sintered at Low Temperature and Pressure. Materials. 2025; 18(21):4981. https://doi.org/10.3390/ma18214981
Chicago/Turabian StyleStojek, Krzysztof, Adam Krzysztof Nowak, Olga Rac-Rumijowska, Mateusz Czok, Damian Nowak, and Przemysław Matkowski. 2025. "Ag Microparticle/Au Nanoparticle Thermal Interface Materials Sintered at Low Temperature and Pressure" Materials 18, no. 21: 4981. https://doi.org/10.3390/ma18214981
APA StyleStojek, K., Nowak, A. K., Rac-Rumijowska, O., Czok, M., Nowak, D., & Matkowski, P. (2025). Ag Microparticle/Au Nanoparticle Thermal Interface Materials Sintered at Low Temperature and Pressure. Materials, 18(21), 4981. https://doi.org/10.3390/ma18214981

