Pectin-Coated Zeolitic Imidazolate Framework-8 Nanoparticles: A Dual-Responsive System for Controlled Carbendazim Delivery
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Pectin from Sweetpotato Peels
2.3. Synthesis and Characterization of MBC@ZTA-PT NPs
2.4. In Vitro Release of MBC@ZTA-PT
2.5. Release Kinetics Investigation
2.6. Statistical Analysis
3. Results
3.1. Characteristics of Nanoparticles
3.2. Pectinase and pH-Responsive Release Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| MBC | carbendazim | 
| ZIF-8 | zeolitic imidazolate framework-8 | 
| TA | tannic acid | 
| PT | pectin | 
| MOFs | metal–organic frameworks | 
References
- Zhou, T.; Guo, T.; Wang, Y.; Wang, A.; Zhang, M. Carbendazim: Ecological risks, toxicities, degradation pathways and potential risks to human health. Chemosphere 2023, 314, 137723. [Google Scholar] [CrossRef]
- Singh, S.; Singh, N.; Kumar, V.; Datta, S.; Wani, A.B.; Singh, D.; Singh, K.; Singh, J. Toxicity, monitoring and biodegradation of the fungicide carbendazim. Environ. Chem. Lett. 2016, 14, 317–329. [Google Scholar] [CrossRef]
- Yang, L.; Chen, H.; Zheng, Q.; Luo, P.; Yan, W.; Huang, S.; Zhang, Z. A β-cyclodextrin-functionalized metal–organic framework enhances the insecticidal activity of indoxacarb by affecting amino acid metabolism in red imported fire ants. Chem. Eng. J. 2023, 458, 141417. [Google Scholar] [CrossRef]
- Bakre, D.S.; Kaliwal, B.B. In-vitro assessment of carbendazim and copper oxychloride cytotoxicity on HaCaT and HepG2 human cell lines. J. Appl. Biol. 2017, 5, 023–029. [Google Scholar]
- Lu, Z.J.; Shi, W.; Qiao, L.; Ma, D.; Zhang, J.; Yao, C.; Ying, G. Benzimidazole fungicide carbendazim induces gut inflammation through the TLR5/NF-κB pathway in grass carp. Environ. Sci. Technol. 2025, 59, 2473–2483. [Google Scholar] [CrossRef]
- European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance carbendazim. EFSA J. 2010, 8, 1598. [Google Scholar] [CrossRef]
- Bai, C.; Zhang, S.F.; Huang, L.; Wang, H.; Wang, W.; Ye, Q. Starch-based hydrogel loading with carbendazim for controlled-release and water absorption. Carbohydr. Polym. 2015, 125, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Li, Z.; Shao, X. Photocontrolled release of carbendazim from photocaged molecule. Photochem. Photobiol. 2023, 99, 1310–1317. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Xie, Z.; Cheng, J.; Xiao, D.; Xiong, Q.; Wang, Q.; Zhao, J.; Gui, W. A light-triggered pH-responsive metal–organic framework for smart delivery of fungicide to control Sclerotinia diseases of oilseed rape. ACS Nano 2021, 15, 6987–6997. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.H.; Yan, C.; Fei, Q.; Zhang, B.; Wu, W. MOF-based stimuli-responsive controlled release nanopesticide: Mini review. Front. Chem. 2023, 11, 1272725. [Google Scholar] [CrossRef]
- Yang, S.; Lü, F.; Wang, L.; Liu, S.; Wu, Z.; Cheng, Y.; Liu, F. pH-Responsive metal–organic framework for targeted delivery of fungicide, release behavior, and sustainable plant protection. ACS Appl. Mater. Interfaces 2024, 29, 5330. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Zhang, X.L.; Shi, D.; Wang, Z. Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: A critical review. Front. Chem. Sci. Eng. 2021, 15, 221–237. [Google Scholar] [CrossRef]
- Jiao, W.; Liu, X.; Li, Y.; Li, B.; Du, Y.; Zhang, Z.; Chen, Q.; Fu, M. Organic acid, a virulence factor for pathogenic fungi, causing postharvest decay in fruits. Mol. Plant Pathol. 2022, 23, 304–312. [Google Scholar] [CrossRef]
- Han, X.; Qian, Y.; Li, J.; Zhang, Z.K.; Guo, J.; Zhang, N.; Liu, L.; Cheng, Z.; Yu, X. Preparation of azoxystrobin-zinc metal–organic framework/biomass charcoal composite materials and application in the prevention and control of gray mold in tomato. ACS Appl. Mater. Interfaces 2023, 24, 15609. [Google Scholar] [CrossRef]
- Wegener, C.; Jansen, G. The susceptibility of tissue cell walls to Erwinia enzymes differs among the potato cultivars. Potato Res. 1996, 39, 515–522. [Google Scholar] [CrossRef]
- Anand, R.; Kulothungan, S. Plant cell wall degrading metabolites mediated pathogenesis by Aspergillus niger in crown rot of Arachis hypogaea L. J. Microbiol. Biotechnol. Res. 2014, 4, 42–49. [Google Scholar]
- Phalip, V.; Goubet, F.; Carapito, R.; Jeltsch, J.M. Plant cell wall degradation with a powerful Fusarium graminearum enzymatic arsenal. J. Microbiol. Biotechnol. 2008, 19, 573–581. [Google Scholar]
- Liang, Y.; Wang, S.; Jia, H.; Yao, Y.; Song, J.; Dong, H.; Cao, Y.; Zhu, F.; Huo, Z. Pectin functionalized metal–organic frameworks as dual-stimuli-responsive carriers to improve the pesticide targeting and reduce environmental risks. Colloids Surf. B Biointerfaces 2022, 219, 112796. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Li, H.; Li, Z.; Cui, Z.; Ma, G.; Nassor, A.K.; Guan, Y.; Pan, X. Multi-stimuli-responsive pectin-coated dendritic mesoporous silica nanoparticles with Eugenol as a sustained release nanocarrier for the control of tomato bacterial wilt. J. Nanobiotechnol. 2025, 23, 191. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahman, T.M.; Qin, X.; Li, D.; Senosy, I.A.; Mmby, M.; Wan, H.; Li, J.; He, S. Pectinase-responsive carriers based on mesoporous silica nanoparticles for improving the translocation and fungicidal activity of prochloraz in rice plants. J. Hazard. Mater. 2021, 404, 126440. [Google Scholar] [CrossRef]
- Mai, Q.; Lu, Y.; Cai, Q.; Hu, J.; Lv, Y.; Yang, Y.; Wang, L.; Zhou, Y.; Liu, J. pH and pectinase dual-responsive zinc oxide core–shell nanopesticide: Efficient control of Sclerotinia disease and reduction of environmental risks. Nanomaterials 2024, 14, 2022. [Google Scholar] [CrossRef]
- Min, T.; Zhou, L.; Sun, X.; Du, H.; Bian, X.; Zhu, Z.; Wen, Y. Enzyme-responsive food packaging system based on pectin-coated poly(lactic acid) nanofiber films for controlled release of thymol. Food Res. Int. 2022, 157, 11256. [Google Scholar] [CrossRef]
- Baron, R.D.; Pérez, L.L.; Salcedo, J.M.; Córdoba, L.P.; do Amaral Sobral, P.J. Production and characterization of films based on blends of chitosan from blue crab waste and pectin from orange peel. Int. J. Biol. Macromol. 2017, 98, 676–683. [Google Scholar] [CrossRef]
- Kumar, S.; Reddy, A.R.L.; Basumatary, I.B.; Nayak, A.; Dutta, D.; Konwar, J.; Purkayastha, M.D.; Mukherjee, A. Recent progress in pectin extraction and their applications in developing films and coatings for sustainable food packaging: A review. Int. J. Biol. Macromol. 2023, 239, 124281. [Google Scholar] [CrossRef] [PubMed]
- Abouzeid, R.; Abd, E.M.; Koo, M.S.; Picha, D.H.; Wu, Q. Sustainable sweetpotato peel-based nanocoatings reinforced with sodium alginate: Enhancing shelf life and reducing postharvest losses in agricultural produce. Int. J. Biol. Macromol. 2025, 322, 146673. [Google Scholar] [CrossRef] [PubMed]
- Abouzeid, R.; Sadeghi, P.; Picha, D.H.; Wu, Q. Sustainable nanocoatings for agricultural produce: A biodegradable approach using cellulose nanomaterials and pectin from sweet potato peel. Carbohydr. Polym. Technol. Appl. 2025, 10, 100785. [Google Scholar] [CrossRef]
- Yang, L.; Chen, H.; Zhu, S.; Zhao, S.; Huang, S.; Cheng, D.; Xu, H.; Zhang, Z. Pectin-coated iron-based metal–organic framework nanoparticles for enhanced foliar adhesion and targeted delivery of fungicides. ACS Nano 2024, 18, 6533–6549. [Google Scholar] [CrossRef]
- Keleştemur, S.; Altunbek, M.; Culha, M. Influence of EDC/NHS coupling chemistry on stability and cytotoxicity of ZnO nanoparticles modified with proteins. Appl. Surf. Sci. 2017, 403, 455–463. [Google Scholar] [CrossRef]
- Lee, J.H.; Yeo, Y. Controlled drug release from pharmaceutical nanocarriers. Chem. Eng. Sci. 2015, 125, 75–84. [Google Scholar] [CrossRef]
- Yang, C.; Fang, M.; Zhang, F.; Lu, Z.; Zhang, L. A versatile polyphenol-coordinated eco-friendly hollow ZIF-based nanohybrid for precise fungicide delivery and highly efficient suppression of Botrytis cinerea. J. Clean. Prod. 2024, 434, 139922. [Google Scholar] [CrossRef]
- Alifah, M.; Devianti, V.A.; Mukminin, A.; Rachmawati, Y.; Ainul Fahmi, M.; Ediati, R. The effect of KOH activation in synthesis and characterization of zeolitic imidazolate frameworks-8 (ZIF-8) templated mesoporous carbon. Adv. Mater. Res. 2015, 1123, 78–83. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, X.; Xu, Z.; Meng, Q.; Shen, C.; Zhang, G.; Gao, C. Zeolite imidazolate framework composite membranes prepared on amine/tannic acid cross-linked polymeric hollow fiber substrates for enhanced gas separation. Sep. Purif. Technol. 2023, 324, 124531. [Google Scholar] [CrossRef]
- Siddiqui, M.F.; Bano, B. Exposure of carbendazim induces structural and functional alteration in garlic phytocystatin: An in vitro multi-spectroscopic approach. Pestic. Biochem. Physiol. 2018, 145, 66–75. [Google Scholar] [CrossRef]
- Oh, S.Y.; Yoo, D.I.; Shin, Y.; Kim, H.C.; Kim, H.Y.; Chung, Y.S.; Youk, J.H. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr. Res. 2005, 340, 2376–2391. [Google Scholar] [CrossRef]
- Xu, B.; Mei, Y.; Xiao, Z.; Kang, Z.; Wang, R.; Sun, D. Monitoring thermally induced structural deformation and framework decomposition of ZIF-8 through in situ temperature-dependent measurements. Phys. Chem. Chem. Phys. 2017, 19, 27178–27183. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, C.; Liu, S.; Li, Y.; Zhang, X.; Wang, Q.; Ye, J.; Lu, Y.; Fu, Y.; Xu, J. Gallic acid-loaded HFZIF-8 for tumor-targeted delivery and thermal-catalytic therapy. Nanoscale 2024, 16, 9496–9508. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Naimi-Jamal, M.R.; Habibi, A.; Dekamin, M.G. Controlled release of aspirin in the body using pectin-coated ZIF-8 nanoparticles. Curr. Drug Deliv. 2024, 22, 583–592. [Google Scholar] [CrossRef]
- Jongert, T.K.; Slowinski, I.A.; Dao, B.; Cortez, V.H.; Gredig, T.; Plascencia, N.D.; Tian, F. Zeta potential and size analysis of zeolitic imidazolate framework-8 nanocrystals prepared by surfactant-assisted synthesis. Langmuir 2024, 40, 6138–6148. [Google Scholar] [CrossRef]
- Wu, M.C.; Li, C.; Zhao, J.; Ling, Y.; Liu, R. Tannic acid-mediated synthesis of dual-heteroatom-doped hollow carbon from a metal–organic framework for efficient oxygen reduction reaction. Dalton Trans. 2018, 47, 7812–7818. [Google Scholar] [CrossRef]
- Stanišić, M.D.; Popović Kokar, N.; Ristić, P.; Balaž, A.M.; Senćanski, M.; Ognjanović, M.; Đokić, V.R.; Prodanović, R.; Todorović, T.R. Chemical modification of glycoproteins’ carbohydrate moiety as a general strategy for the synthesis of efficient biocatalysts by biomimetic mineralization: The case of glucose oxidase. Polymers 2021, 13, 3875. [Google Scholar] [CrossRef]
- Liu, L.; Cao, L.; Niu, H.; Wang, J. Zinc metal–organic framework growing on the surface of fruit peels and its photocatalytic activity. ACS Omega 2021, 6, 10187–10195. [Google Scholar] [CrossRef]
- Goize, D.; Keller, L.; Rinke, P. Accurate absolute and relative core-level binding energies from GW. J. Phys. Chem. Lett. 2020, 11, 1840–1847. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Song, S.; Liu, M.; Yao, S.; Liang, Z.; Cheng, H.; Ren, Z.; Liu, W.; Lin, R.; Qi, G.; et al. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J. Am. Chem. Soc. 2020, 142, 12563–12567. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Wang, X.; Sun, M.; Ma, M.; Tian, J.; Shao, M. Atomically Dispersed Zinc Active Sites Efficiently Promote the Electrochemical Conversion of N2 to NH3. Energy Environ. Mater. 2023, 7, e12630. [Google Scholar] [CrossRef]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. 2010, 67, 217–223. [Google Scholar]



| Model | pH = 7 | Pectinase + pH = 7 | Pectinase + pH = 5 | |
|---|---|---|---|---|
| Zero-order | k | 0.21 | 0.42 | 0.43 | 
| C0 | 11.15 | 23.76 | 28.25 | |
| R2 | 0.86 | 0.94 | 0.95 | |
| First-order | k | −0.01 | −0.01 | −0.01 | 
| ln(C0) | 2.44 | 3.18 | 3.35 | |
| R2 | 0.86 | 0.86 | 0.88 | |
| Korsmeyer–Peppas | k | 8.68 | 18.11 | 22.99 | 
| n | 0.25 | 0.25 | 0.24 | |
| R2 | 0.83 | 0.98 | 0.99 | |
| Higuchi | k | 2.11 | 2.86 | 2.98 | 
| C | 7.66 | 19.42 | 24.52 | |
| R2 | 0.85 | 0.92 | 0.93 | |
| Logistic Growth Model | t0 | 60.15 | 47.85 | 54.52 | 
| k | 0.04 | 0.03 | 0.03 | |
| R2 | 0.95 | 0.99 | 0.99 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Abouzeid, R.; Wu, Q.; de Hoop, C.F.; Qi, J. Pectin-Coated Zeolitic Imidazolate Framework-8 Nanoparticles: A Dual-Responsive System for Controlled Carbendazim Delivery. Materials 2025, 18, 4961. https://doi.org/10.3390/ma18214961
Chen Y, Abouzeid R, Wu Q, de Hoop CF, Qi J. Pectin-Coated Zeolitic Imidazolate Framework-8 Nanoparticles: A Dual-Responsive System for Controlled Carbendazim Delivery. Materials. 2025; 18(21):4961. https://doi.org/10.3390/ma18214961
Chicago/Turabian StyleChen, Yan, Ragab Abouzeid, Qinglin Wu, Cornelis F. de Hoop, and Jinqiu Qi. 2025. "Pectin-Coated Zeolitic Imidazolate Framework-8 Nanoparticles: A Dual-Responsive System for Controlled Carbendazim Delivery" Materials 18, no. 21: 4961. https://doi.org/10.3390/ma18214961
APA StyleChen, Y., Abouzeid, R., Wu, Q., de Hoop, C. F., & Qi, J. (2025). Pectin-Coated Zeolitic Imidazolate Framework-8 Nanoparticles: A Dual-Responsive System for Controlled Carbendazim Delivery. Materials, 18(21), 4961. https://doi.org/10.3390/ma18214961
 
        



 
       