Influence of Pure Aluminum and 7075 Aluminum Alloy Powder Interlayers on the Microstructural and Mechanical Properties of Diffusion-Bonded 7B04 Aluminum Alloy Joints
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Method
3. Results and Discussions
3.1. Influence of Powder Size on DB Joints
3.1.1. Microstructure of the Joint
3.1.2. Element Diffusion at the Joint
3.1.3. Microhardness
3.1.4. LSS and Fracture Analysis
3.2. DB with the Mixed Al/7075 Powder Interlayer
3.2.1. Microstructure of the Joint
3.2.2. Microhardness
3.2.3. LSS and Fracture Analysis
3.3. DB Mechanism of 7B04 with Powder Interlayer
4. Conclusions
- The introduction of powder interlayers considerably improves joint quality compared to direct diffusion bonding without an powder interlayer. The joint made with a 50 nm pure aluminum powder interlayer showed superior performance, reaching a maximum LSS of 220 MPa and a microhardness of 96 HV. It is concluded that nano-sized aluminum powder is the most effective powder interlayer material under the tested bonding conditions (515 °C, 7.5 h, 4.4 MPa), providing optimal interface bonding and mechanical properties.
- Microstructural analysis showed that joints bonded with micro-sized 7075 aluminum alloy powders (45 μm and 75 μm) also demonstrated high quality, with LSS values of 181 MPa and 184 MPa, respectively. These joints exhibited improved interfacial continuity and fewer defects compared to the joint with 5 μm 7075 powder. Therefore, it is concluded that within the micro-scale range, larger particle sizes (45–75 μm) of 7075 alloy powder are more effective for creating strong diffusion-bonded joints than finer powders (5 μm), which tend to agglomerate and form voids.
- The use of mixed Al/7075 powder interlayers changed the joint microstructure and performance. As the amount of aluminum powder in the mixture increased, the grain boundaries within the powder interlayer became less clear, and the LSS improved accordingly. The joint with a 100% Al powder (1 μm) interlayer reached an LSS of 212 MPa. This indicates that adding aluminum powder enhances interfacial bonding and strength enhancement.
- Elemental distribution analysis confirmed mutual diffusion of alloying elements (Zn, Mg, Cu) across the bonding interface for all powder interlayer types. The concentration gradients facilitated atomic interdiffusion, contributing to metallurgical bonding. The measured deformation rates for all bonded specimens remained below 6%. It is concluded that the powder interlayer strategy effectively promotes elemental interdiffusion while successfully controlling deformation, making it suitable for applications requiring dimensional accuracy.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| DB | Diffusion bonding |
| Al | Aluminum |
| LSS | Lap shear strength |
| SPDW | Spark plasma diffusion welding |
| TLP | Transient liquid phase |
| MMC | Metal matrix composites |
| SPS | Spark plasma sintering |
| SEM | Scanning electron microscope |
| EDS | Energy dispersive spectrometer |
References
- Kenevisi, M.S.; Mousavi Khoie, S.M.; Alaei, M. Microstructural Evaluation and Mechanical Properties of the Diffusion Bonded Al/Ti Alloys Joint. Mech. Mater. 2013, 64, 69–75. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, S.; Jia, L.; Li, Q.; Ma, M. Study on the Influence of Surface Roughness and Temperature on the Interface Void Closure and Microstructure Evolution of Stainless Steel Diffusion Bonding Joints. Metals 2024, 14, 812. [Google Scholar] [CrossRef]
- Liu, D.; Lin, C.; Lin, W.; Lee, S.; Gwo, J. Influential Factors on Diffusion Bonding Strength as Demonstrated by Bonded Multi-Layered Stainless Steel 316L and 430 Stack. Materials 2024, 17, 3713. [Google Scholar] [CrossRef] [PubMed]
- Carlone, P.; Astarita, A. Dissimilar Metal Welding. Metals 2019, 9, 1206. [Google Scholar] [CrossRef]
- Kah, P.; Shrestha, M.; Martikainen, J. Trends in Joining Dissimilar Metals by Welding. Appl. Mech. Mater. 2014, 440, 269–276. [Google Scholar] [CrossRef]
- Song, G.; Li, T.; Yu, J.; Liu, L. A Review of Bonding Immiscible Mg/Steel Dissimilar Metals. Materials 2018, 11, 2515. [Google Scholar] [CrossRef]
- Li, T.; Lei, Y.; Chen, L.; Ye, H.; Liu, X.; Li, X. Advances in Mechanism and Application of Diffusion Bonding of Titanium Alloys. J. Mater. Process. Technol. 2025, 337, 118736. [Google Scholar] [CrossRef]
- Çetinkaya, Ş.; Haluk, K. Investigation of Microstructure and Interfacial Reactions of Diffusion Bonding of Ni-Ti6Al4V Materials Joined by Using Ag Interlayer. Materials 2024, 17, 4462. [Google Scholar] [CrossRef]
- Huang, Y.; Humphreys, F.J.; Ridley, N.; Wang, Z.C. Diffusion bonding of hot rolled 7075 aluminium alloy. Mater. Sci. Technol. 1998, 14, 405–410. [Google Scholar] [CrossRef]
- Aravinda, T.; Niranjan, H.B.; Boppana, S.B.; Dayanand, R.S. Solid State Diffusion Bonding of Al2024 Sheets. J. Mines Metals Fuels 2021, 69, 455–460. [Google Scholar]
- Wang, Y.; Chai, P.; Guo, X.; Qi, B. Effect of Connection Processes on Mechanical Properties of 7B04 Aluminum Alloy Structures. China Weld. 2021, 30, 50–57. [Google Scholar] [CrossRef]
- Lao, S.; Zhan, L.; Qian, W.; Xu, Y.; Ma, B.; Liu, C.; Huang, M.; Yang, Y.; Chen, K.; Peng, N.; et al. Creep Aging Behavior of a Thermo-Mechanical Treated 7B04 Aluminum Alloy. Metals 2023, 13, 182. [Google Scholar] [CrossRef]
- Li, Z.; Xiong, B.; Zhang, Y.; Zhu, B.; Wang, F.; Liu, H. Microstructural Evolution of Aluminum Alloy 7B04 Thick Plate by Various Thermal Treatments. Trans. Nonferrous Met. Soc. China 2008, 18, 40–45. [Google Scholar] [CrossRef]
- Lathashankar, B.; Tejaswini, G.C.; Suresh, R.; Swamy, N.H.S. Advancements in Diffusion Bonding of Aluminium and Its Alloys: A Comprehensive Review of Similar and Dissimilar Joints. Adv. Mater. Process. Technol. 2022, 84, 4659–4677. [Google Scholar] [CrossRef]
- Zuruzi, A.S.; Li, H.; Dong, G. Diffusion Bonding of Aluminium Alloy 6061 in Air Using an Interface Treatment Technique. Mater. Sci. Eng. A 1999, 259, 145–148. [Google Scholar]
- Shirzadi, A.A.; Wallach, E.R. Novel Method for Diffusion Bonding Superalloys and Aluminium Alloys (USA Patent 6,669,534 B2, European Patent Pending). Mater. Sci. Forum 2005, 502, 431–436. [Google Scholar] [CrossRef]
- Wu, Y.E.; Lo, Y.L. Surface protection for AA8090 aluminum alloy by diffusion bonding. Theor. Appl. Fract. Mech. 2002, 38, 71–79. [Google Scholar] [CrossRef]
- Kurgan, N. Investigation of the Effect of Diffusion Bonding Parameters on Microstructure and Mechanical Properties of 7075 Aluminium Alloy. Int. J. Adv. Manuf. Technol. 2014, 71, 2115–2124. [Google Scholar] [CrossRef]
- Varmazyar, J.; Khodaei, M. Diffusion Bonding of Aluminum-Magnesium Using Cold Rolled Copper Interlayer. J. Alloys Compd. 2019, 773, 838–843. [Google Scholar] [CrossRef]
- Liu, D.; Xu, J.; Li, X.; Wei, P.; Liang, Y.; Qin, J.; Sun, H.; Ding, T.; Ding, Z.; Zhong, S.; et al. Influence of Al Foil Interlayer on Performance of Vacuum Diffusion Bonding Joint of 6061 Aluminium Alloy. J. Iron Steel Res. Int. 2024, 31, 2404–2412. [Google Scholar] [CrossRef]
- Ureña, A.; de Salazar, J.; Escalera, M. Diffusion Bonding of an Aluminium-Copper Alloy Reinforced with Silicon Carbide Particles (AA2014/SiC/13p) Using Metallic Interlayers. Scr. Mater. 1996, 35, 1285–1293. [Google Scholar] [CrossRef]
- Song, K.; Lv, L.; Zhu, S.; Liu, F.; Luo, J.; Qing, Z.; Zhong, Z.; Zhu, Z.; Wu, Y. Microstructure and Mechanical Properties of Spark Plasma Diffusion-Bonded 5A06Al Joints with Al–20Cu–5Si–2Ni Interlayer. Int. J. Adv. Manuf. Technol. 2021, 114, 3627–3643. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, W.; Zhang, B.; Mao, C.; Wang, X.; Pan, W.; Du, J.; Xiao, H. Enhanced Interfacial Properties and Deformation Behavior of Ti/Al Composite Plates through Pure Al Interlayer-Assisted Diffusion Bonding. Mater. Sci. Eng. A 2025, 944, 148947. [Google Scholar] [CrossRef]
- Liu, W.; Yue, X.; Hu, Q.; Song, Y.; Zhu, B.; Chen, X.; Huang, H. Effects of Recrystallization and Element Diffusion Behavior on Interfacial Bonding Quality and Mechanical Properties of Aluminum Laminated Composites. J. Alloys Compd. 2024, 985, 174045. [Google Scholar] [CrossRef]
- Ureña, A.; de Salazar, J.; Quiñones, J.; Martín, J. Tem Characterization of Diffusion Bonding of Superplastic 8090 Al-Li Alloy. Scr. Mater. 1996, 34, 617–623. [Google Scholar] [CrossRef]
- Lee, Y.S.; Lim, C.H.; Lee, C.H.; Seo, K.W.; Shin, S.Y.; Lee, C.H. Diffusion Bonding of Al 6061 Alloys Using an Eutectic Reaction of Al-Ag-Cu. Key Eng. Mater. 2005, 297–300, 2772–2777. [Google Scholar] [CrossRef]
- Huang, J.; Dong, Y.; Wan, Y.; Zhao, X.; Zhang, H. Investigation on Reactive Diffusion Bonding of SiCp/6063 MMC by Using Mixed Powders as Interlayers. J. Mater. Process. Technol. 2007, 190, 312–316. [Google Scholar] [CrossRef]
- Hosseinabadi, N.; Sarraf-Mamoory, R.; Mohammad Hadian, A. Diffusion Bonding of Alumina Using Interlayer of Mixed Hydride Nano Powders. Ceram. Int. 2014, 40, 3011–3021. [Google Scholar] [CrossRef]
- Guo, W.; Xin, J.; Hao, D.; Ma, Y.; Xiong, J.; Li, J.; Feng, Q. Diffusion Bonding of Nickel-Based Powder Metallurgy Superalloy FGH98 with Pure Nickel Interlayer. J. Mater. Res. Technol. 2024, 30, 267–282. [Google Scholar] [CrossRef]
- Hu, W.; Xie, Y.; Xu, X.; Yang, T.; Liu, H.; Tu, R.; Tan, R. Microstructure and Shear Strength of SiC Ceramics Diffusion Bonded with Ti Foils by Spark Plasma Sintering. Materials 2025, 18, 1725. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Ramos, A.S.; Simões, S. Joining Ti6Al4V to Alumina by Diffusion Bonding Using Titanium Interlayers. Metals 2021, 11, 1728. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, D.; Chen, M.; Wu, T.; Ouyang, J.; Xiong, D. An Investigation on the Spark Plasma Sintering Diffusion Bonding of Diamond/Cu Composites with a Cr Interlayer. Materials 2024, 17, 6026. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Wang, L.; Li, J.; Cui, L.; Jiang, X. The Influence of Pre-Strain Levels on the Microstructure and Performance of Aircraft 7b04 Aluminum Alloy Skin. J. Phys. Conf. Ser. 2024, 2691, 012059. [Google Scholar] [CrossRef]
- David, W.; John, H.; Nia, R.H.; George, S.G. Stress-Corrosion Cracking Evaluation of Hot-Stamped AA7075-T6 B-Pillars. SAE Int. J. Eng. 2017, 10, 2021–2026. [Google Scholar]















| Element | Zn | Mg | Cu | Cr | Fe | Mn | Si | Al |
|---|---|---|---|---|---|---|---|---|
| 7B04 | 5.0–6.5 | 1.8–2.8 | 1.4–2.0 | 0.1–0.25 | 0.05–0.25 | 0.2–0.6 | 0.1 | Bal |
| 7075 | 5.1–6.1 | 2.1–2.9 | 1.2–2.0 | 0.16–0.28 | 0.5 | 0.3 | 0.4 | Bal |
| Powder | Particle Size/Weight Ratio |
|---|---|
| No Powder | - |
| Pure Al | 50 nm |
| 7075 | 5 µm, 45 µm, 75 µm |
| Mixed Al (1 µm)/7075 (75 µm) | 25%, 50%, 75%, 100% |
| Powder | No Powder | 5 μm 7075 | 45 μm 7075 | 75 μm 7075 | 50 nm Al |
|---|---|---|---|---|---|
| t1 − 1 (mm) | 2.574 | 2.562 | 2.556 | 2.591 | 2.571 |
| t1 − 2 (mm) | 2.575 | 2.583 | 2.583 | 2.582 | 2.553 |
| t1 − 3 (mm) | 2.588 | 2.557 | 2.574 | 2.588 | 2.561 |
| t2 − 1 (mm) | 2.429 | 2.430 | 2.441 | 2.500 | 2.441 |
| t2 − 2 (mm) | 2.427 | 2.447 | 2.467 | 2.496 | 2.427 |
| t2 − 3 (mm) | 2.440 | 2.422 | 2.460 | 2.499 | 2.436 |
| Average Deformation rate (%) | 5.70 | 5.23 | 4.47 | 3.43 | 4.96 |
| standard deviation (%) | 0.06 | 0.08 | 0.05 | 0.10 | 0.09 |
| Al/7075 Weight Ratio (%) | 25 | 50 | 75 | 100 |
|---|---|---|---|---|
| t1 − 1 (mm) | 2.592 | 2.578 | 2.556 | 2.564 |
| t1 − 2 (mm) | 2.602 | 2.574 | 2.59 | 2.567 |
| t1 − 3 (mm) | 2.598 | 2.574 | 2.592 | 2.582 |
| t2 − 1 (mm) | 2.503 | 2.512 | 2.529 | 2.517 |
| t2 − 2 (mm) | 2.505 | 2.508 | 2.557 | 2.515 |
| t2 − 3 (mm) | 2.503 | 2.505 | 2.558 | 2.523 |
| Average Deformation rate (%) | 3.60 | 2.60 | 1.23 | 2.05 |
| standard deviation (%) | 0.14 | 0.07 | 0.14 | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Li, C.; Xie, L.; Chen, M. Influence of Pure Aluminum and 7075 Aluminum Alloy Powder Interlayers on the Microstructural and Mechanical Properties of Diffusion-Bonded 7B04 Aluminum Alloy Joints. Materials 2025, 18, 4907. https://doi.org/10.3390/ma18214907
Wang N, Li C, Xie L, Chen M. Influence of Pure Aluminum and 7075 Aluminum Alloy Powder Interlayers on the Microstructural and Mechanical Properties of Diffusion-Bonded 7B04 Aluminum Alloy Joints. Materials. 2025; 18(21):4907. https://doi.org/10.3390/ma18214907
Chicago/Turabian StyleWang, Ning, Chunbo Li, Lansheng Xie, and Minghe Chen. 2025. "Influence of Pure Aluminum and 7075 Aluminum Alloy Powder Interlayers on the Microstructural and Mechanical Properties of Diffusion-Bonded 7B04 Aluminum Alloy Joints" Materials 18, no. 21: 4907. https://doi.org/10.3390/ma18214907
APA StyleWang, N., Li, C., Xie, L., & Chen, M. (2025). Influence of Pure Aluminum and 7075 Aluminum Alloy Powder Interlayers on the Microstructural and Mechanical Properties of Diffusion-Bonded 7B04 Aluminum Alloy Joints. Materials, 18(21), 4907. https://doi.org/10.3390/ma18214907

