Stress Distributions and Luminescent Responses of Mechanoluminescent Cylinders with Various Sizes and Loading Paths
Abstract
:1. Introduction
2. Experimental and Simulation
2.1. Experimental
2.2. Simulation Procedure
3. Results and Discussion
3.1. ML Cylinder at a Constant Stress Rate
- Elastic deformation: stress and strain are linearly related following Hooke’s Law.
- Geometric approximation: the contact surface is small in comparison with the curvature radius, approximating a plane contact.
- Load assumption: the load is perpendicular to the contact surface and the friction is ignored.
3.2. Effect of Stress Rate
3.3. Relationship Between Light Intensity and Strain Energy Density of the ML Cylinder
4. Conclusions
- Stress and light intensity correlation: This study systematically investigates for the first time the maximum contact stress and light intensity at the corresponding location for ML cylinders under normal loading, discovering that these distributions show good similarity under different normal forces. In combination with theoretical and simulated stress analysis, along with light-intensity experiments under different sample sizes and loading paths, it establishes the stress–light intensity relationship to deepen our understanding of ML material properties under complex conditions.
- Dynamic and static conditions: The luminescent responses of the Ca(1–2x%)ZnOS%Bi3+, x%Li+ (x = 5) ML material under both the dynamic and static stresses are systematically studied, which establishes a foundation for their applications in various stress environments.
- Geometry and luminescent response: This study systematically analyzes for the first time the impact of geometric dimensions (such as length and radius) on the stress distribution and luminescence intensity of ML cylinders, revealing the significant role of geometric parameters in the optical response of ML materials. Based on the analysis of ML luminescence response, it is theoretically possible to infer the geometric dimensions of the measured object, enabling indirect measurement of its shape and structural features.
- Strain Energy and Luminescent Response: This study establishes, for the first time, a model linking strain energy density and its rate of change to light intensity and its variation rate, clarifying why ML materials remain non-luminescent under static loads yet emit light under dynamic loads. Additionally, it reveals that elastic recovery following unloading can induce secondary luminescence, offering theoretical support for the application of ML materials in dynamic stress monitoring.
- Broad application range: This study provides a theoretical support for the development of high-precision and high-sensitivity sensors based upon ML materials and used, for instance, in structural health monitoring, flexible electronics, and smart sensors.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.C.; Wang, X.; Marriott, G.; Xu, C.-N. Trap-controlled mechanoluminescent materials. Prog. Mater. Sci. 2019, 103, 678–742. [Google Scholar] [CrossRef]
- Li, W.; Cai, Y.Y.; Chang, J.Q.; Wang, S.S.; Liu, J.J.; Zhou, L.; Wu, M.M.; Zhang, J.-C. Unraveling mechanoluminescent mechanisms in doped CaZnOS materials: Co-mediation of trap-controlled and non-trap-controlled Processes. Adv. Funct. Mater. 2023, 33, 2305482. [Google Scholar] [CrossRef]
- Zhuang, Y.; Xie, R.-J. Mechanoluminescence rebrightening the prospects of stress sensing: A review. Adv. Mater. 2024, 33, 2005925. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Xiong, P.; Zhang, S.; Sun, Y.; Yan, N.; Wang, Z.; Chen, Q.; Shao, P.; Brik, M.G.; Ye, S.; et al. Cation-defect-induced self-reduction towards efficient mechanoluminescence in Mn2+-activated perovskites. Mater. Horiz. 2023, 10, 3476–3487. [Google Scholar] [CrossRef]
- Wang, W.; Tang, K.W.K.; Pyatnitskiy, I.; Liu, X.; Shi, X.; Huo, D.; Jeong, J.; Wynn, T.; Sangani, A.; Baker, A.; et al. Ultrasound-induced cascade amplification in a mechanoluminescent nanotransducer for enhanced sono-optogenetic deep brain stimulation. ACS Nano 2023, 24, 17. [Google Scholar] [CrossRef]
- Mohamed, A.Y.A.; Welles, L.; Siggins, A.; Healy, M.G.; Brdjanovic, D.; Rada-Ariza, A.M.; Lopez-Vazquez, C.M. Effects of substrate stress and light intensity on enhanced biological phosphorus removal in a photo-activated sludge system—Science direct. Water Res. 2020, 189, 116606. [Google Scholar] [CrossRef]
- Ishida, S.; Narahara, A. Stress-rate effect on time response of mechanoluminescent-sensor luminescent intensity. Opt. Express 2019, 27, 3935–3943. [Google Scholar] [CrossRef]
- Yang, H.; Wei, Y.; Ju, H.; Huang, X.; Li, J.; Wang, W.; Peng, D.; Tu, D.; Li, G. Microstrain-stimulated elastico-mechanoluminescence with dual-mode stress sensing. Adv. Mater. 2024, 36, e2401296. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, X.; Wang, F. Expanding the toolbox of inorganic mechanoluminescence materials. Acc. Mater. Res. 2021, 2, 10. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Z.-B.; Zhang, J.; Zhou, J.; Dong, W.; Wang, Y. Contact electrification induced mechanoluminescence. Nano Energy 2022, 94, 106920. [Google Scholar] [CrossRef]
- Xin, Q.; Cai, Z.; Su, M.; Li, F.; Fang, W. Printable skin-driven mechanoluminescence devices via nanodoped matrix modification. Adv. Mater. 2018, 30, e1800291. [Google Scholar] [CrossRef]
- Xie, Z.; Xue, Y.; Zhang, X.; Chen, J.; Lin, Z.; Liu, B. Isostructural doping for organic persistent mechanoluminescence. Nat. Commun. 2024, 15, 3668. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Pan, G.; Wan, J.; Xiao, Z.; Zhang, Y.; Xu, S.; Bai, G. Smart films based on semiconductor heterojunctions of mechanoluminescent sulfide and sulfur oxide for stress sensing and anti-counterfeiting applications. Chem. Eng. J. 2024, 495, 153141. [Google Scholar] [CrossRef]
- Du, Y.; Jiang, Y.; Sun, T.; Zhao, J.; Huang, B.; Peng, D.; Wang, F. Mechanically excited multicolor luminescence in lanthanide ions. Adv. Mater. 2019, 31, e1807062. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, S.; Zhao, L.; Wang, C.; Lv, H.; Liu, B.; Qiu, J.; Xu, X.; Yu, X. Delayed stress memory by CaAl2O4:Eu2+ mechanoluminescent phosphor with defect engineering regulation. J. Adv. Ceram. 2022, 11, 1319–1329. [Google Scholar] [CrossRef]
- Petit, R.R.; Michels, S.E.; Feng, A.; Smet, P.F. Adding memory to pressure-sensitive phosphors. Light Sci. Appl. 2019, 8, 124. [Google Scholar] [CrossRef]
- Xiao, Y.; Wei, X.; Wang, S.; Yang, K.; Li, S. Dynamic triboelectrification-Induced electroluminescence and its use in visualized sensing. Adv. Mater. 2016, 28, 6656–6664. [Google Scholar] [CrossRef]
- Li, M.; Chen, H.; Zhao, J.; Xia, M.; Xing, Q.; Wang, W.; Liu, Q.; Lu, Y.; Luo, M.; Zhu, X. Stretchable continuous p-n alternating thermoelectric fibers for energy harvesting and sensing devices. Adv. Compos. Hybrid Mater. 2024, 7, 106. [Google Scholar] [CrossRef]
- Chen, C.; Zhuang, Y.; Li, X.; Lin, F.; Peng, D.; Tu, D.; Xie, A.; Xie, R.-J. Achieving remote stress and temperature dual-modal imaging by double-lanthanide-activated mechanoluminescent materials. Adv. Funct. Mater. 2021, 31, 2101567. [Google Scholar] [CrossRef]
- Chen, C.; Lin, Z.; Huang, H.; Pan, X.; Zhou, T.-L.; Luo, H.; Jin, L.; Peng, D.; Xu, J.; Zhuang, Y.; et al. Revealing the intrinsic decay of mechanoluminescence for achieving ultra-fast-response stress sensing. Adv. Funct. Mater. 2023, 33, 2304917. [Google Scholar] [CrossRef]
- Li, Z.-B. Force-induced 1540 nm luminescence: Role of piezotronic effect in energy transfer process for mechanoluminescence. Nano Energy 2020, 69, 104413. [Google Scholar] [CrossRef]
- Fujio, Y.; Xu, C.-N.; Terasawa, Y.; Sakata, Y.; Yamabe, J.; Ueno, N.; Terasaki, N.; Yoshida, A.; Watanabe, S.; Murakami, Y. Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel. Int. J. Hydrogen Energy 2016, 41, 1333–1340. [Google Scholar] [CrossRef]
- Yang, X.; Liu, R.; Xu, X.; Liu, Z.; Sun, M.; Yan, W.; Peng, D.; Xu, C.-N.; Huang, B.; Tu, D. Effective repeatable mechanoluminescence in heterostructured Li1−xNaxNbO3: Pr3+. Small 2021, 7, 2103441. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-L.; Li, T.; Guo, F.; Yuan, J.-Y.; Zhang, C.-H.; Zhou, Y.; Li, Q.-L.; Wan, D.-Y.; Zhao, J.-T.; Zhang, Z.-J. Multiple color emission of mechanoluminescence and photoluminescence from SrZnSO:Bi3+ for multimode anticounterfeiting. Inorg. Chem. 2022, 61, 4302–4311. [Google Scholar] [CrossRef]
- Yang, Y.-L.; Yang, X.-C.; Yuan, J.-Y.; Li, T.; Fan, Y.-T.; Wang, L.; Deng, Z.; Li, Q.-L.; Wan, D.-Y.; Zhao, J.-T.; et al. Time-resolved bright red to cyan color tunable mechanoluminescence from CaZnOS: Bi3+, Mn2+ for anti-counterfeiting device and stress sensor. Adv. Opt. Mater. 2021, 9, 2100668. [Google Scholar] [CrossRef]
- Yuan, J.-Y.; Yang, Y.-L.; Yang, X.-C.; Fan, Y.-T.; Li, T.; Huang, M.; Zhang, F.; Li, Q.-L.; Zhao, J.-T.; Zhang, Z.-J. Regulating the trap distribution to achieve high-contrast mechanoluminescence with an extended saturation threshold through co-doping Nd3+ into CaZnOS:Bi3+, Li+. J. Mater. Chem. C 2021, 9, 7689–7696. [Google Scholar] [CrossRef]
- Fan, Y.-T.; Yang, Y.-L.; Li, T.; Yuan, J.-Y.; Li, Q.-L.; Zhao, J.-T.; Wan, D.-Y.; Zhang, Z.-J. Enhanced mechanically induced red-light emitting novel mechanoluminescence materials for ultrasonic visualization and monitoring applications. J. Mater. Chem. C 2021, 9, 5868–5875. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, Y.-L.; Fan, Y.-T.; Yang, W.; Zhang, W.-B.; Hu, J.-F.; Zhang, Z.-J.; Zhao, J.-T. Intense red photoluminescence and mechanoluminescence from Mn2+-activated SrZnSO with a layered structure. J. Mater. Chem. C 2019, 7, 8070–8078. [Google Scholar] [CrossRef]
- Tu, D.; Xu, C.-N.; Yoshida, A.; Fujihala, M.; Hirotsu, J.; Zheng, X.-G. LiNbO3:Pr3+: A multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence. Adv. Mater. 2017, 29, 1606914. [Google Scholar] [CrossRef]
- Zhang, J.-C.; Xu, C.-N.; Kamimura, S.; Terasawa, Y.; Yamada, H.; Wang, X. An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses. Opt. Express 2013, 21, 12976–12986. [Google Scholar] [CrossRef]
- Yang, Y.-L.; Li, Q.-L.; Yang, X.-C.; Yang, W.; An, R.; Li, T.; Zhou, Y.; Zhang, H.-W.; Zhao, J.-T.; Zhang, Z.-J. Color manipulation from Bi3+-activated CaZnOS under stress with ultra-high efficiency and low threshold for multiple anticounterfeiting. J. Mater. Chem. C 2020, 8, 3308–3315. [Google Scholar] [CrossRef]
- Liu, L.; Xu, C.-N.; Yoshida, A.; Tu, D.; Ueno, N.; Kainuma, S. Scalable elasticoluminescent strain sensor for precise dynamic stress imaging and onsite infrastructure diagnosis. Adv. Mater. Technol. 2019, 4, 1800336. [Google Scholar] [CrossRef]
- Wen, B.-C. Mechanical Design Manual, 6th ed.; Basic Materials for Mechanical Design; China Machine Press: Beijing, China, 2018; Volume 1, ISBN 9787111583417. [Google Scholar]
- Gourgiotis, P.-A.; Zisis, T.; Giannakopoulos, A.-E.; Georgiadis, H.-G. The hertz contact problem in couple-stress elasticity. Int. J. Solids Struct. 2019, 168, 228–237. [Google Scholar] [CrossRef]
- Hertz, H. Über die Berührung fester elastischer Körper. J. Reine Angew. Math. 1881, 92, 156–171. [Google Scholar]
- Liaudet, J.P.; Rigaud, E. Response of an impacting hertzian contact to an order-2 subharmonic excitation: Theory and experiments. J. Sound Vib. 2006, 296, 319–333. [Google Scholar] [CrossRef]
- Sayles, R.S.; Desilva, G.M.S.; Leather, J.A.; Anderson, J.C.; Macpherson, P.B. Elastic conformity in hertzian contacts. Tribol. Int. 1981, 14, 315–322. [Google Scholar] [CrossRef]
- Yang, X.-Q. Contact Mechanics Theory and Rolling Bearing Design Analysis; Huazhong University of Science and Technology Press: Wuhan, China, 2018; ISBN 978-7-5680-3510-1. [Google Scholar]
- Johnson, K.L.; Greenwood, J.A. An adhesion map for the contact of elastic spheres. J. Colloid Interface Sci. 1997, 192, 326–333. [Google Scholar] [CrossRef]
- Oluwole, O.; Emagbetere, E. Finite element analysis of in-plane displacements and von-mises stresses in ell-ipsoidal and circular cylinderical petroleum tankers. Sci. Res. 2013, 5, 167–177. [Google Scholar] [CrossRef]
- Matsui, S. Practical estimation method for extreme value distribution of von Mises stress in ship structure. J. Mar. Sci. Technol. 2023, 28, 72–86. [Google Scholar] [CrossRef]
- Sun, C.Y.; Liu, W.; Shi, X.; Rao, G.H.; Zhao, J.T. Consistency of simulated stress distribution with experimental mechanoluminescent intensity distribution facilitating stress visualization device design. J. Lumin. 2025, 280, 121060. [Google Scholar] [CrossRef]
- Feng, Y.-T.; Gao, W. On the strain energy distribution of two elastic solids under smooth contact. Powder Technol. 2021, 389, 376–382. [Google Scholar] [CrossRef]
- Wei, Y.; Xing, G.C.; Liu, K.; Li, G.G.; Dang, P.P.; Liang, S.S.; Liu, M.; Cheng, Z.Y.; Jin, D.Y.; Lin, J. New strategy for designing orangish-red-emitting phosphor via oxygen-vacancy-induced electronic localization. Light Sci. Appl. 2019, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, Y.; Karnaushenko, D.; Chen, L.; Hao, J.; Ding, F.; Schmidt, O.G. Addressable and Color-Tunable Piezophotonic Light-Emitting Stripes. Adv. Mater. 2017, 29, 1605165. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.-Y.; Liu, W.; Shi, X.; Rao, G.-H.; Zhao, J.-T. Stress Distributions and Luminescent Responses of Mechanoluminescent Cylinders with Various Sizes and Loading Paths. Materials 2025, 18, 331. https://doi.org/10.3390/ma18020331
Sun C-Y, Liu W, Shi X, Rao G-H, Zhao J-T. Stress Distributions and Luminescent Responses of Mechanoluminescent Cylinders with Various Sizes and Loading Paths. Materials. 2025; 18(2):331. https://doi.org/10.3390/ma18020331
Chicago/Turabian StyleSun, Chang-Ying, Wei Liu, Xin Shi, Guang-Hui Rao, and Jing-Tai Zhao. 2025. "Stress Distributions and Luminescent Responses of Mechanoluminescent Cylinders with Various Sizes and Loading Paths" Materials 18, no. 2: 331. https://doi.org/10.3390/ma18020331
APA StyleSun, C.-Y., Liu, W., Shi, X., Rao, G.-H., & Zhao, J.-T. (2025). Stress Distributions and Luminescent Responses of Mechanoluminescent Cylinders with Various Sizes and Loading Paths. Materials, 18(2), 331. https://doi.org/10.3390/ma18020331