Effects of Thickness of the Corn Seed Coat on the Strength of Processed Biological Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Particle Size and Shape Characterization
2.3. Corn Seed Moisture Measurement
2.4. Strength Testing Procedure
2.5. Measurement of the Seed Coat Thickness and Endosperm Thickness
2.6. Determination of the Mechanical Properties of Corn Kernels
2.7. Data Analysis
3. Results and Discussion
3.1. Particle Size and Shape
3.2. The Share of the Pericarp and Hard Endosperm in the Corn Kernels
3.3. Mechanical Properties of Corn Kernels
3.4. The Influence of the Seed Coat Thickness and Vitreous Endosperm on the Strength Properties of Maize Grains
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Cereal Supply and Demand Brief. Available online: https://www.fao.org/worldfoodsituation/csdb/en (accessed on 11 December 2024).
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global maize production, consumption and trade: Trends and R&D implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- Sharma, K.; Kaur, J.; Ahmed, N. Insights into Sweet Corn Starch Extraction Methods: A Comparative Analysis. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Coulson, C.A.; Troyer, B.; McPhillips, L.J.; Norman, M.; Erickson, G.E. 254 Evaluation of Different Corn Milling Methods for High-moisture and Dry Corn on Nutrient Digestion. J. Anim. Sci. 2021, 99 (Suppl. 1), 124–125. [Google Scholar]
- Chen, Z.; Wassgren, C.; Ambrose, K. A Review of Grain Kernel Damage: Mechanisms, Modeling, and Testing Procedures. Trans. ASABE 2020, 63, 455–475. [Google Scholar] [CrossRef]
- Kruszelnicka, W. Study of Selected Physical-Mechanical Properties of Corn Grains Important from the Point of View of Mechanical Processing Systems Designing. Materials 2021, 14, 1467. [Google Scholar] [CrossRef] [PubMed]
- Otwinowski, H. Energy and population balances in comminution process modelling basedon the informational entropy. Powder Technol. 2006, 167, 33–44. [Google Scholar] [CrossRef]
- Otwinowski, H.; Zbroński, D.; Urbaniak, D. Experimental identification of entropy modelof comminution process. Granul. Matter 2007, 9, 377–386. [Google Scholar] [CrossRef]
- Kovács, Á.; Kerényi, G. Physical Characteristics and Mechanical Behaviour of Maize Stalks for Machine Development. Int. Agrophys. 2019, 33, 427–436. [Google Scholar] [CrossRef]
- Kruszelnicka, W. The dependance of breakage energy on the grain size for selected. J. Phys. Conf. Ser. 2023, 2540, 012038. [Google Scholar] [CrossRef]
- Pandiselvam, R.; Thirupathi, V.; Mohan, S. Engineering properties of rice. Agric. Eng 2015, 3, 69–78. Available online: https://www.researchgate.net/publication/305881241_ENGINEERING_PROPERTIES_OF_RICE (accessed on 7 July 2024).
- Romański, L.; Stopa, R.; Niemiec, A.; Wiercioch, M. Energy consumption of wheat grain during static shearing process. Agric. Eng. 2006, 4, 153–159. [Google Scholar]
- Romański, L.; Stopa, R. Energy consumption of wheat grain during shearing dynamic process ACTA Tech. Agrar 2003, 2, 33–41. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20033205408 (accessed on 12 September 2024).
- Gierz, Ł.; Kolankowska, E.; Markowski, P.; Koszela, K. Measurements and Analysis of the Physical Properties of Cereal Seeds Depending on Their Moisture Content to Improve the Accuracy of DEM Simulation. Appl. Sci 2022, 12, 549. [Google Scholar] [CrossRef]
- Kruszelnicka, W.; Chen, Z.; Ambrose, K. Moisture-Dependent Physical-Mechanical Properties of Maize, Rice, and Soybeans as Related to Handling and Processing. Materials 2022, 15, 8729. [Google Scholar] [CrossRef]
- Kruszelnicka, W.; Diviš, J.; Hlosta, J.; Gierz, Ł.; Žurovec, D. Calibration of Selected Bulk Biomaterials Parameters for DEM Simulation of Comminution Process. Case Study: Corn and Rice Grains. Adv. Sci. Technol. Res. J. 2022, 16, 64–77. [Google Scholar] [CrossRef]
- Tavares, L.M.; Cavalcanti, P.P.; de Carvalho, R.M.; da Silveira, M.W.; Bianchi, M.; Otaviano, M. Fracture Probability and Fragment Size Distribution of Fired Iron Ore Pellets by Impact. Powder Technol. 2018, 336, 546–554. [Google Scholar] [CrossRef]
- Cavalcanti, P.P.; Tavares, L.M. Statistical Analysis of Fracture Characteristics of Industrial Iron Ore Pellets. Powder Technol. 2018, 325, 659–668. [Google Scholar] [CrossRef]
- Wiercioch, M.; Niemiec, A.; Roma, L. The impact of wheat seeds size on energy consumption of their grinding process. Agric. Eng. 2008, 103, 367–372. [Google Scholar]
- Dziki, D.; Laskowski, J. Influence of Wheat Kernel Geometrical Properties on the Mechanical Properties and Grinding Ability. Acta Agrophys. 2003, 2, 735–742. [Google Scholar]
- Qiao, M.; Xia, G.; Cui, T.; Xu, Y.; Gao, X.; Su, Y.; Li, Y.; Fan, H. Effect of Moisture, Protein, Starch, Soluble Sugar Contents and Microstructure on Mechanical Properties of Maize Kernels. Food Chem. 2022, 379, 132147. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Cui, T.; Zhang, D.; He, X.; Xu, Y. Damage Resistance and Compressive Properties of Bulk Maize Kernels at Varying Pressing Factors: Experiments and Modeling. J. Food Process Eng. 2019, 42, e13267. [Google Scholar] [CrossRef]
- Su, Y.; Cui, T.; Zhang, D.; Xia, G.; Gao, X.; He, X.; Xu, Y. Effects of Shape Feature on Compression Characteristics and Crack Rules of Maize Kernel. J. Food Process. Preserv. 2020, 44, e14307. [Google Scholar] [CrossRef]
- Gabriel, C.A.; Cotabarren, I.M.; Piña, J. DEM breakage calibration for single particle fracture of maize kernels under a particle replacement approach. Chem. Eng. Res. Des. 2023, 195, 151–165. [Google Scholar] [CrossRef]
- Blandino, M.; Mancini, M.C.; Peila, A.; Rolle, L.; Vanara, F.; Reyneri, A. Determination of Maize Kernel Hardness: Comparison of Different Laboratory Tests to Predict Dry-Milling Performance. J. Sci. Food Agric. 2010, 90, 1870–1878. [Google Scholar] [CrossRef]
- Afkari, S.A.; Minaei, S. Behavior of Wheat Kernels under Quasi-static Loading and its Relation to Grain Hardness. J. Agric. Sci. Technol. 2004, 6, 11–19. [Google Scholar]
- Martin, C.R.; Converse, A.R.H.H.; Czuchajowska, Z.; Lai, F.S.; Pomeranz, Y. Breakage Susceptibility and Hardness of Corn Kernels of Various Sizes and Shapes. Appl. Eng. Agric. 1987, 3, 104–113. [Google Scholar] [CrossRef]
- Gao, P.; Tian, S.; Chen, Y.; Lu, J. Mechanical Properties of Corn: Correlation with Endosperm Hardness. J. Food Process Eng. 2023, 46, e14491. [Google Scholar] [CrossRef]
- Kuźniar, P.; Szpunar-Krok, E.; Findura, P.; Buczek, J.; Bobrecka-Jamro, D. Physical and chemical properties of soybean seeds determine their susceptibility to mechanical damage. Zemdirb. Agric. 2016, 103, 183–192. [Google Scholar] [CrossRef]
- Xu, A.; Qiu, J.; Yin, Z.; Wei, C. Morphological characteristics of endosperm in different regions of maize kernels with different vitreousness. J. Cereal Sci. 2019, 87, 273–279. [Google Scholar] [CrossRef]
- Wang, B.; Wang, J. Mechanical properties of maize kernel horny endosperm, floury endosperm and germ. Int. J. Food Prop. 2019, 22, 863–877. [Google Scholar] [CrossRef]
- Dudina, A.A.; Zakharov, I.N.; Nefed’eva, E.E.; Okolelova, A.A.; Dmitrevskaya, I.I.; Belopukhov, S.L.; Seregina, I.I. Physical and mechanical properties of hard seed coat on the example of Gleditsia triacanthos L. Braz. J. Biol. 2024, 84, e284897. [Google Scholar] [CrossRef] [PubMed]
- Hebda, T.; Frączek, J. Effect of selected factors on seed elasticity index. Inżynieria Rol. 2005, 71, 171–180. [Google Scholar]
- Frączek, J.; Hebda, T.; Ślipek, Z.; Kurpaska, S. Effect of seed coat thickness on seed hardness. Can. Biosyst. Eng. 2005, 47, 41–45. [Google Scholar]
- Dobrzański, B., Jr.; Szot, B. Scaning microscopy in estimation of the seed coat strength of soybean, pea, and lentil seed. Acta Agrophys. 2001, 58, 51–58. [Google Scholar]
- Mabille, F.; Gril, J.; Abecassis, J. Mechanical Properties of Wheat Seed Coats. Cereal Chem. 2001, 78, 231–235. [Google Scholar] [CrossRef]
- Dobrzański, B.; Szot, B. Mechanical properties of pea seed coat. Int. Agrophys. 1997, 11, 301–306. [Google Scholar]
- Corn Growing Areas in Poland. Available online: https://www.polskieziarno.pl/2023/02/21/rejony-uprawy-kukurydzy-w-polsce/?srsltid=AfmBOoq2uDjuxKJ2yqv5pUWGxcQnNJkDdnph8IO4nfnSFBVXHEdHJCtB (accessed on 17 December 2024).
- Corn Variety CELONG. Available online: https://oseva.pl/kukurydza/celong-fao-250 (accessed on 17 December 2024).
- Niedziółka, I.; Szymanek, M. Utilization of Maize Grain for Industrial and Energetistics Purposes. Mot. Energy 2023, 5, 119–125. [Google Scholar]
- Gongora, I.G.; Dunoyer, A.T.; Garcia-Zapateiro, L.A. Physical, Chemical and Biological Properties of Maize Variety Fr-28. Contemp. Eng. Sci. 2018, 11, 257–268. Available online: https://www.m-hikari.com/ces/ces2018/ces5-8-2018/p/garciazapateiroCES5-8-2018-1.pdf (accessed on 7 July 2024). [CrossRef]
- García-Lara, S.; Chuck-Hernandez, C.; Serna-Saldivar, S.O. Chapter 6-Development and Structure of the Corn Kernel. In Corn, 3rd ed.; Serna-Saldivar, S.O., Ed.; AACC International Press: St. Paul, MN, USA, 2019; pp. 147–163. [Google Scholar]
- The Total Chemical Composition of Corn Grain. Available online: https://www.fao.org/4/t0395e/T0395E03.htm (accessed on 17 December 2024).
- Damasceno Junior, C.V.; Godoy, S.; Gonela, A.; Scapim, C.A.; Grandis, A.; dos Santos, W.D.; Mangolin, C.A.; Buckeridge, M.S.; Machado, M.D.F.P.S. Biochemical composition of the pericarp cell wall of popcorn inbred lines with different popping expansion. Curr. Res. Food Sci. 2022, 5, 102–106. [Google Scholar] [CrossRef]
- PN-EN ISO 24333; Cereals and Cereal Products—Sampling (ISO 24333:20010). Polski Komitet Normalizacyjny (PKN): Warsaw, Poland, 2012.
- ISO 13322-2:2006; Particle Size Analysis—Image Analysis Methods—Part 2: Dynamic Image Analysis Methods. The Polish Committee for Standardization (Polski Komitet Normalizacyjny—PKN): Warsaw, Poland, 2006.
- ASAE S368.4 DEC2000 (R2008); Compression Test of Food Materials of Convex Shape. American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2008.
- Muzzalupo, I. Food Industry; IntechOpen: Rijeka, Croatia, 2013; Available online: https://www.intechopen.com/subjects/326 (accessed on 30 July 2024).
- Gorji, A.; Rajabipour, A.; Tavakoli, H. Fracture Resistance of Wheat Grain as a Function of Moisture Content, Loading Rate and Grain Orientation. Aust. J. Crop Sci. 2010, 4, 448–452. [Google Scholar]
- Sarker, M.S.H.; Hasan, S.M.K.; Ibrahim, M.N.; Aziz, N.A.; Punan, M.S. Mechanical Property and Quality Aspects of Rice Dried in Industrial Dryers. J. Food Sci. Technol. 2017, 54, 4129–4134. [Google Scholar] [CrossRef] [PubMed]
- Tavares, L.M.; de Almeida, R.F. Breakage of Green Iron Ore Pellets. Powder Technol. 2020, 366, 497–507. [Google Scholar] [CrossRef]
- Kalkan, F.; Kara, M.; Bastaban, S.; Turgut, N. Strength and Frictional Properties of Popcorn Kernel as Affected by Moisture Content. Int. J. Food Prop. 2011, 14, 1197–1207. [Google Scholar] [CrossRef]
- Tredoux, C.T.; Durheim, K. Numbers, Hypotheses and Conclusions: A Course in Statistics for the Social Sciences; UCT Press: Cape Town, South Africa, 2002. [Google Scholar]
- Toebe, M.; Cargnelutti Filho, A.; Lopes, S.J.; Burin, C.; Reis da Silveira, T.; Casarotto, G. Sample size in the estimation of correlation coefficients for corn hybrids in crops and accuracy levels. Bragantia Camp. 2015, 74, 16–24. [Google Scholar] [CrossRef]
- Steyn, H.S. Practical significant relationships between two variables. South Afr. J. Ind. Psychol. 2002, 28, 10–15. [Google Scholar]
- Van Aswegen, A.S.; Engelbrecht, A.S. The relationship between transformational leadership, integrity and an ethical climate in organisations. SA J. Hum. Resour. Manag. 2009, 7, 175. [Google Scholar] [CrossRef]
- Shah, K.S.; Hashim, M.H.M.; Emad, M.Z.; Arffin, K.S.; Junaid, M.; Khan, N.M. Effect of Particle Morphology on Mechanical Behavior of Rock Mass. Arab. J. Geosci. 2020, 13, 708. [Google Scholar] [CrossRef]
- Kim, T.H.; Hampton, J.G.; Opara, L.U.; Hardacre, A.K.; Mackay, B.R. Effects of Maize Grain Size, Shape and Hardness on Drying Rate and the Occurrence of Stress Cracks. J. Sci. Food Agric. 2002, 82, 1232–1239. [Google Scholar] [CrossRef]
- Pomeranz, Y.; Czuchajowska, C.; Martin, C.R.; Lai, F.S. Determination of corn hardness by the Stenvert Hardness Tester. Cereal Chem. 1985, 62, 108–112. [Google Scholar]
- Gan, D.; Gao, F.; Zhang, Y.; Jinxia, Z.; Niu, F.; Gan, Z. Effects of the Shape and Size of Irregular Particles on Specific Breakage Energy under Drop Weight Impact. Shock. Vib. 2019, 2318571. [Google Scholar] [CrossRef]
- Sun, L.-X.; Liu, S.-X.; Wang, J.-X.; Wu, C.-L.; Li, Y.; Zhang, C.-Q. The effects of grain texture and phenotypic traits on the thin-layer drying rate in maize (Zea mays L.) inbred lines. J. Integr. Agric. 2016, 15, 317–325. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, G. Physicochemical properties of vitreous and floury endosperm flours in maize. Food Sci. Nutr. 2019, 7, 2605–2612. [Google Scholar] [CrossRef]
- Weerasooriya, P.R.D.; Nadhilah, R.; Owolabi, F.A.T.; Hashim, R.; Abdul Khalil HP, S.; Syahariza, Z.A.; Hiziroglu, S.; Haafiz, M.K.M. Exploring the properties of hemicellulose based carboxymethyl cellulose film as a potential green packaging. Curr. Res. Green Sustain. Chem. 2020, 1–2, 20–28. [Google Scholar] [CrossRef]
- Leppänen, I.; Vikman, M.; Harlin, A.; Orelma, H. Enzymatic Degradation and Pilot-Scale Composting of Cellulose-Based Films with Different Chemical Structures. J. Polym. Environ. 2020, 28, 458–470. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, J.; Wang, X.; Durachko, D.M.; Zhang, S.; Cosgrove, D.J. Molecular insights into the complex mechanics of plant epidermal cell walls. Science 2021, 372, 706–711. [Google Scholar] [CrossRef]
- Kruszelnicka, W.; Leda, P.; Tomporowski, A.; Ambrose, K. Breakage behavior of corn kernels subjected to repeated loadings. Powder Technol. 2024, 435, 119372. [Google Scholar] [CrossRef]
- Singh, S.S.; Finner, M.F.; Rohatgi, P.K.; Buelow, F.H.; Schaller, M. Structure and Mechanical Properties of Corn Kernels: A Hybrid Composite Material. J. Mater. Sci. 1991, 26, 274–284. [Google Scholar] [CrossRef]
- Michalski, T. Maize as an industrial plant. Zesz. Probl. Postępów Nauk Rol. 1997, 450, 201–217. [Google Scholar]
- Wu, H.; Becraft, P.W.; Dannenhoffer, J.M. Maize Endosperm Development: Tissues, Cells, Molecular Regulation and Grain Quality Improvement. Front. Plant Sci. 2022, 13, 852082. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, B.; Wang, L.; Chen, X.; Wang, W.; Gu, Y.; Wang, Z.; Xiong, F. Effect of drought stress on the development of endosperm starch granules and the composition and physicochemical properties of starches from soft and hard wheat. J. Sci. Food Agric. 2016, 96, 2746–2754. [Google Scholar] [CrossRef] [PubMed]
- Dobrzaski, B.; Stępniewski, A. Physical Properties of Seeds in Technological Processes. Adv. Agrophys. Res. 2013, 11, 269–294. [Google Scholar] [CrossRef]
- Hernández, G.L.; Aguilar, C.H.; Pacheco, A.D.; Sibaja, A.M.; Orea, A.A.C.; de Jesus Agustin Flores Cuautle, J. Thermal properties of maize seed components. Cogent Food Agric. 2023, 9, 2231681. [Google Scholar] [CrossRef]
Value of r-Pearson’s | Magnitude of Correlation |
---|---|
<0.19 | There is almost no relationship between the variables |
0.20–0.39 | Low correlation between the variables |
0.40–0.69 | Moderate correlation and substantial relationship |
0.70–0.89 | High correlation and strong relationship |
0.90–1.00 | Very high correlation |
Data | Mean | Standard Deviation | SE of Mean | Lower 95% CI of Mean | Upper 95% CI of Mean | Variance | Median | Range (Maximum—Minimum) |
---|---|---|---|---|---|---|---|---|
, μm | 44.86 | 3.71 | 0.59 | 43.68 | 46.05 | 13.8 | 45.31 | 20.87 |
Sp, mm2 | 1.43 | 0.13 | 0.02 | 1.39 | 1.48 | 0.02 | 1.43 | 0.75 |
(Sp/S)∙100, % | 1.83 | 0.15 | 0.02 | 1.78 | 1.88 | 0.02 | 1.83 | 0.69 |
Vp, mm3 | 9.05 | 1.06 | 0.17 | 8.71 | 9.39 | 1.12 | 8.79 | 4.95 |
(Vp/V) 100, % | 3.74 | 0.35 | 0.06 | 3.63 | 3.86 | 0.12 | 3.77 | 1.91 |
, μm | 250.71 | 103.59 | 20.72 | 207.95 | 293.47 | 10,730.58 | 214 | 384.33 |
Sb, mm2 | 9.18 | 3.16 | 0.63 | 7.88 | 10.49 | 10.01 | 8.26 | 12.07 |
(Sb/S)∙100, % | 11.7 | 3.9 | 0.78 | 10.09 | 13.31 | 15.24 | 10.37 | 13.83 |
Vb, mm3 | 38.75 | 19.45 | 3.89 | 30.72 | 46.79 | 378.47 | 30.85 | 70.67 |
(Vb/V) 100, % | 15.78 | 7.26 | 1.45 | 12.79 | 18.78 | 52.73 | 14.12 | 26.25 |
Ratio of hard to soft endosperm | 0.21 | 0.12 | 0.02 | 0.16 | 0.26 | 0.01 | 0.17 | 0.46 |
Data | Mean | Standard Deviation | SE of Mian | Lower 95% CI of Mean | Upper 95% CI of Mean | Variance | Median | Range (Maximum—Minimum) |
---|---|---|---|---|---|---|---|---|
FB, n | 272.8 | 116.63 | 26.76 | 216.59 | 329.02 | 13,601.64 | 257.52 | 429.36 |
FR, n | 410.4 | 222.12 | 35.57 | 338.4 | 482.41 | 49,339.37 | 359.04 | 874.44 |
DB, mm | 0.14 | 0.09 | 0.02 | 0.09 | 0.18 | 0.01 | 0.15 | 0.36 |
DR, mm | 0.28 | 0.14 | 0.02 | 0.23 | 0.32 | 0.02 | 0.3 | 0.47 |
EjB, J/kg | 89.89 | 66.04 | 14.77 | 58.98 | 120.8 | 4361.77 | 80.01 | 213.49 |
EjR, J/kg | 259.26 | 201.39 | 31.84 | 194.86 | 323.67 | 40,556.3 | 211.15 | 740.48 |
H, n/mm | 1722.83 | 822.93 | 131.77 | 1456.07 | 1989.6 | 677,221.15 | 1525.27 | 3745.21 |
p, mJ/mm3 | 0.34 | 0.27 | 0.04 | 0.26 | 0.43 | 0.07 | 0.26 | 0.97 |
FB, n | FR, n | DB, mm | DR, mm | EjB, J/kg | EjR, J/kg | H, n/mm | p, mJ/mm3 | |
---|---|---|---|---|---|---|---|---|
, μm | 0.55 * | 0.16 | 0.72 * | 0.22 | 0.57 * | 0.14 | −0.48 * | 0.12 |
Sp, mm2 | 0.46 * | 0.2 | 0.71 * | 0.27 # | 0.47 * | 0.16 | −0.47 * | 0.16 |
(Sp/S)∙100, % | 0.63 * | 0.06 | 0.65 * | 0.13 | 0.67 * | 0.08 | −0.4 * | 0.05 |
Vp, mm3 | 0.38 | 0.16 | 0.63 * | 0.29 # | 0.37 | 0.09 | −0.41 * | 0.07 |
(Vp/V) 100, % | 0.53 * | 0.13 | 0.5 * | 0.09 | 0.56 * | 0.16 | −0.29 # | 0.16 |
, μm | 0.68 * | 0.38 # | 0.43 | 0.07 | 0.59 * | 0.27 | 0.43 # | 0.25 |
Sb, mm2 | 0.71 * | 0.42 * | 0.45 # | 0.11 | 0.61 * | 0.3 | 0.45 * | 0.27 |
(Sb/S)∙100, % | 0.68 * | 0.35 # | 0.45 # | 0.04 | 0.6 * | 0.26 | 0.42 # | 0.22 |
Vb, mm3 | 0.66 * | 0.4 # | 0.42 | 0.1 | 0.56 * | 0.26 | 0.41 # | 0.24 |
(Vb/V) 100, % | 0.63 * | 0.35 | 0.4 | 0.03 | 0.56 * | 0.26 | 0.46 * | 0.24 |
Ratio of hard to soft endosperm | 0.67 * | 0.37 # | 0.41 | 0.04 | 0.59 * | 0.28 | 0.45 * | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gierz, Ł.; Kruszelnicka, W.; Łykowski, W.; Steike, M.; Wichliński, M.; Estrada, Q.; Przybył, K. Effects of Thickness of the Corn Seed Coat on the Strength of Processed Biological Materials. Materials 2025, 18, 222. https://doi.org/10.3390/ma18020222
Gierz Ł, Kruszelnicka W, Łykowski W, Steike M, Wichliński M, Estrada Q, Przybył K. Effects of Thickness of the Corn Seed Coat on the Strength of Processed Biological Materials. Materials. 2025; 18(2):222. https://doi.org/10.3390/ma18020222
Chicago/Turabian StyleGierz, Łukasz, Weronika Kruszelnicka, Wiktor Łykowski, Mikołaj Steike, Michał Wichliński, Quirino Estrada, and Krzysztof Przybył. 2025. "Effects of Thickness of the Corn Seed Coat on the Strength of Processed Biological Materials" Materials 18, no. 2: 222. https://doi.org/10.3390/ma18020222
APA StyleGierz, Ł., Kruszelnicka, W., Łykowski, W., Steike, M., Wichliński, M., Estrada, Q., & Przybył, K. (2025). Effects of Thickness of the Corn Seed Coat on the Strength of Processed Biological Materials. Materials, 18(2), 222. https://doi.org/10.3390/ma18020222