Combination of Cold Helium Plasma with Fluoride Varnish to Improve Enamel Surface Protection
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimens Preparation
2.2. Specimens Grouping
2.3. Topical Fluoride Application
2.4. Cold Atmospheric Plasma Setup
2.5. Scanning Electron Microscopy (SEM)
2.6. Energy-Dispersive X-Ray (EDX)
2.7. Microhardness
2.8. Statistical Analysis
3. Results
3.1. SEM Analysis
3.2. EDX Analysis
3.3. Microhardness Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karpiński, T.M.; Szkaradkiewicz, A.K. Microbiology of dental caries. J. Biol. Earth Sci. 2013, 3, M21–M24. [Google Scholar]
- Santonocito, S.; Polizzi, A.; Isola, G. The Impact of Diet and Nutrition on the Oral Microbiome. In Oral Microbiome: Symbiosis, Dysbiosis and Microbiome Interventions for Maintaining Oral and Systemic Health; Springer Nature Switzerland AG: Cham, Switzerland, 2025; pp. 53–69. [Google Scholar] [CrossRef]
- Nath, S.; Zilm, P.; Jamieson, L.; Santiago, P.H.R.; Ketagoda, D.H.K.; Weyrich, L. The influence of diet, saliva, and dental history on the oral microbiome in healthy, caries-free Australian adults. Sci. Rep. 2025, 15, 18755. [Google Scholar] [CrossRef]
- Yadav, K.; Prakash, S. Dental caries: A microbiological approach. J. Clin. Infect. Dis. Pract. 2017, 2, 1000118. [Google Scholar] [CrossRef]
- Naim, S.; Spagnuolo, G.; Osman, E.; Mahdi, S.S.; Battineni, G.; Qasim, S.S.B.; Cernera, M.; Rifai, H.; Jaafar, N.; Maalouf, E. Quantitative measurements of the depth of enamel demineralization before and after bleach: An in vitro study. BioMed Res. Int. 2022, 2022, 2805343. [Google Scholar] [CrossRef]
- Whelton, H.; Spencer, A.; Do, L.; Rugg-Gunn, A. Fluoride revolution and dental caries: Evolution of policies for global use. J. Dent. Res. 2019, 98, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Kitasako, Y.; Sadr, A.; Hamba, H.; Ikeda, M.; Tagami, J. Gum containing calcium fluoride reinforces enamel subsurface lesions in situ. J. Dent. Res. 2012, 91, 370–375. [Google Scholar] [CrossRef]
- Hariri, I.; Sadr, A.; Nakashima, S.; Shimada, Y.; Tagami, J.; Sumi, Y. Estimation of the enamel and dentin mineral content from the refractive index. Caries Res. 2013, 47, 18–26. [Google Scholar] [CrossRef]
- Featherstone, J.D.B. Prevention and reversal of dental caries: Role of low level fluoride. Community Dent. Oral Epidemiol. 1999, 27, 31–40. [Google Scholar] [CrossRef]
- Hamilton, I.R. Biochemical effects of fluoride on oral bacteria. J. Dent. Res. 1990, 69, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.C.M.; Zhang, R.; Luo, B.W.; Glenny, A.-M.; Worthington, H.V.; Lo, E.C.M. Topical fluoride as a cause of dental fluorosis in children. Cochrane Database Syst. Rev. 2010, 1, CD007693. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.M.; Salazar, M.; Oliveira, B.H.d.; Coutinho, E.S.F. Fluoride varnishes and decrease in caries incidence in preschool children: A systematic review. Rev. Bras. Epidemiol. 2010, 13, 139–149. [Google Scholar] [CrossRef]
- Gao, S.S.; Zhang, S.; Mei, M.L.; Lo, E.C.-M.; Chu, C.-H. Caries remineralisation and arresting effect in children by professionally applied fluoride treatment–a systematic review. BMC Oral Health 2016, 16, 12. [Google Scholar] [CrossRef] [PubMed]
- Chou, R.; Cantor, A.; Zakher, B.; Mitchell, J.P.; Pappas, M. Preventing dental caries in children< 5 years: Systematic review updating USPSTF recommendation. Pediatrics 2013, 132, 332–350. [Google Scholar] [CrossRef]
- Kalnina, J.; Care, R. Prevention of occlusal caries using a ozone, sealant and fluoride varnish in children. Stomatologija 2016, 18, 26–31. [Google Scholar]
- Azevedo, D.T.; Faraoni-Romano, J.J.; Derceli, J.d.R.; Palma-Dibb, R.G. Effect of Nd: YAG laser combined with fluoride on the prevention of primary tooth enamel demineralization. Braz. Dent. J. 2012, 23, 104–109. [Google Scholar] [CrossRef]
- Tabares, F.L.; Junkar, I. Cold plasma systems and their application in surface treatments for medicine. Molecules 2021, 26, 1903. [Google Scholar] [CrossRef]
- Ghadirian, F.; Abbasi, H.; Bavi, O.; Naeimabadi, A. How living cells are affected during the cold atmospheric pressure plasma treatment. Free Radic. Biol. Med. 2023, 205, 141–150. [Google Scholar] [CrossRef]
- Soltani, Z.; Mehrabifard, R.; Rezaie, F.; Hatami, M.M.; Soltani, H. Simulation of the impact of humidity on the species generated by a one-dimensional discharge of helium gas. arXiv 2024. [Google Scholar] [CrossRef]
- Fathollah, S.; Mirpour, S.; Mansouri, P.; Dehpour, A.R.; Ghoranneviss, M.; Rahimi, N.; Safaie Naraghi, Z.; Chalangari, R.; Chalangari, K.M. Investigation on the effects of the atmospheric pressure plasma on wound healing in diabetic rats. Sci. Rep. 2016, 6, 19144. [Google Scholar] [CrossRef] [PubMed]
- Reuter, S.; Von Woedtke, T.; Weltmann, K.-D. The kINPen—A review on physics and chemistry of the atmospheric pressure plasma jet and its applications. J. Phys. D Appl. Phys. 2018, 51, 233001. [Google Scholar] [CrossRef]
- Mirpour, S.; Fathollah, S.; Mansouri, P.; Larijani, B.; Ghoranneviss, M.; Mohajeri Tehrani, M.; Amini, M.R. Cold atmospheric plasma as an effective method to treat diabetic foot ulcers: A randomized clinical trial. Sci. Rep. 2020, 10, 10440. [Google Scholar] [CrossRef] [PubMed]
- Shojaei, E.; Zare, S.; Shirkavand, A.; Eslami, E.; Fathollah, S.; Mansouri, P. Biophysical evaluation of treating adipose tissue-derived stem cells using non-thermal atmospheric pressure plasma. Sci. Rep. 2022, 12, 11127. [Google Scholar] [CrossRef]
- Mehrabifard, R. Investigating the Effects of Cold Plasma on Cancer Cell Migration in the Presence of a Static Magnetic Field. Meet. Abstr. 2023, MA2023-02, 3437. [Google Scholar] [CrossRef]
- Gershater, E.; Griswold, O.; Talsania, B.E.; Zhang, Y.; Chung, C.-H.; Zheng, Z.; Li, C. Effects of plasma treatment on the strength of bonding to ceramic surfaces in orthodontics—A comprehensive review. Bioengineering 2023, 10, 1323. [Google Scholar] [CrossRef]
- Santonocito, S.; Ferlito, S.; Polizzi, A.; Ronsivalle, V.; Sclafani, R.; Valletta, A.; Lo Giudice, A.; Cavalcanti, R.; Spagnuolo, G.; Isola, G. Therapeutic and metagenomic potential of the biomolecular therapies against periodontitis and the oral microbiome: Current evidence and future perspectives. Int. J. Mol. Sci. 2022, 23, 13708. [Google Scholar] [CrossRef]
- El-Wassefy, N.A. Remineralizing effect of cold plasma and/or bioglass on demineralized enamel. Dent. Mater. J. 2017, 36, 157–167. [Google Scholar] [CrossRef]
- Rupf, S.; Lehmann, A.; Hannig, M.; Schäfer, B.; Schubert, A.; Feldmann, U.; Schindler, A. Killing of adherent oral microbes by a non-thermal atmospheric plasma jet. J. Med. Microbiol. 2010, 59, 206–212. [Google Scholar] [CrossRef]
- Duske, K.; Koban, I.; Kindel, E.; Schröder, K.; Nebe, B.; Holtfreter, B.; Jablonowski, L.; Weltmann, K.D.; Kocher, T. Atmospheric plasma enhances wettability and cell spreading on dental implant metals. J. Clin. Periodontol. 2012, 39, 400–407. [Google Scholar] [CrossRef]
- Valizadeh, S.; Farhadi, E.; Moradi, A.; Hashemikamangar, S.S. Evaluation of the Effect of Cold Plasma Treatment on the Microshear Bond Strength of Composite Resin Restorations to Dentin using Different Adhesive Systems and the Effect of Thermocycling. Open Dent. J. 2021, 15, TODENTJ-15-734. [Google Scholar] [CrossRef]
- Kim, Y.M.; Lee, H.Y.; Lee, H.J.; Kim, J.B.; Kim, S.; Joo, J.Y.; Kim, G.C. Retention improvement in fluoride application with cold atmospheric plasma. J. Dent. Res. 2018, 97, 179–183. [Google Scholar] [CrossRef]
- Bapat, S.A.; Shashikiran, N.D.; Gugawad, S.; Gaonkar, N.; Taur, S.; Hadakar, S.; Chaudhari, P. Effect of non-thermal atmospheric pressure plasma and ErCr: YSGG LASER activation of three fluoride varnishes on surface re-mineralization of enamel: A SEM-EDX analysis. J. Indian Soc. Pedod. Prev. Dent. 2022, 40, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Fathollah, S.; Abbasi, H.; Akhoundi, S.; Naeimabadi, A.; Emamjome, S. Cold plasma enamel surface treatment to increase fluoride varnish uptake. Sci. Rep. 2022, 12, 4657. [Google Scholar] [CrossRef] [PubMed]
- Koontongkaew, S.; Utispan, K.; Chawhuaveang, D.D.; Yu, O.Y.; Worawongvasu, R. Enamel and Its Interaction with the Oral Environment. In Enamel and Dentin-Pulp Complex; IntechOpen: London, UK, 2024. [Google Scholar]
- Cîrdei, M.-V.; Margan, M.-M.; Margan, R.; Ban-Cucerzan, A.; Petre, I.; Hulka, I.; Horhat, R.M.; Todea, D.C. Surface and Mineral Changes of Primary Enamel after Laser Diode Irradiation and Application of Remineralization Agents: A Comparative In Vitro Study. Children 2024, 11, 1069. [Google Scholar] [CrossRef] [PubMed]
- El-Wassefy, N.A. The effect of plasma treatment and bioglass paste on enamel white spot lesions. Saudi J. Dent. Res. 2017, 8, 58–66. [Google Scholar] [CrossRef]
- Petersen, P.E.; Bourgeois, D.; Ogawa, H.; Estupinan-Day, S.; Ndiaye, C. The global burden of oral diseases and risks to oral health. Bull. World Health Organ. 2005, 83, 661–669. [Google Scholar]
- Oliveira, M.R.C.; Oliveira, P.H.C.; Oliveira, L.H.C.; Horliana, A.C.R.T.; Cesar, P.F.; Moura, S.K.; Bussadori, S.K. Microhardness of bovine enamel after different fluoride application protocols. Dent. Mater. J. 2019, 38, 61–67. [Google Scholar] [CrossRef]
- Matar, M.; Darwish, S.; Salma, R.; Lotfy, W. Evaluation of the antibacterial activity of Enamelast® and Fluor defender® fluoride varnishes against Streptococcus mutans biofilm: An in vitro study in primary teeth. Eur. Arch. Paediatr. Dent. 2023, 24, 549–558. [Google Scholar] [CrossRef]
- Ritts, A.C.; Li, H.; Yu, Q.; Xu, C.; Yao, X.; Hong, L.; Wang, Y. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration. Eur. J. Oral Sci. 2010, 118, 510–516. [Google Scholar] [CrossRef]
- Teixeira, H.S.; Coelho, P.G.; Duarte, S.; Janal, M.N.; Silva, N.; Thompson, V.P. Influence of atmospheric pressure plasma treatment on mechanical proprieties of enamel and sealant bond strength. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015, 103, 1082–1091. [Google Scholar] [CrossRef]
- Tenuta, L.M.A.; Zamataro, C.B.; Del Bel Cury, A.A.; Tabchoury, C.P.M.; Cury, J.A. Mechanism of fluoride dentifrice effect on enamel demineralization. Caries Res. 2009, 43, 278–285. [Google Scholar] [CrossRef]
- Richards, D. Fluoride gel effective at reducing caries in children. Evid.-Based Dent. 2015, 16, 108–109. [Google Scholar] [CrossRef] [PubMed]
- Hafith, A.N.; Zbidi, N.D.; Hasan, S.M.; Shallal, W. Research on Treating Demineralized Enamel with Different Remineralizing Agents before Bonding Orthodontic Brackets. Metall. Mater. Eng. 2024, 30, 1–16. [Google Scholar] [CrossRef]
- Souza-Gabriel, A.E.; Colucci, V.; Turssi, C.P.; Serra, M.C.; Corona, S.A.M. Microhardness and SEM after CO2 laser irradiation or fluoride treatment in human and bovine enamel. Microsc. Res. Tech. 2010, 73, 1030–1035. [Google Scholar] [CrossRef]
- Alsabeel, M.H.; Qasim, A.A. Impact of Fluoridated Dental Products on Surface Roughness and Morphology of Bleached Tooth Enamel: An In Vitro Study. Pharmacogn. J. 2024, 16, 217–225. [Google Scholar] [CrossRef]
- Rödig, T.; Dullin, C.; Kück, F.; Krebs, M.; Hettwer-Steeger, I.; Haupt, F. Influence of moisture content of frozen and embalmed human cadavers for identification of dentinal microcracks using micro-computed tomography. J. Mech. Behav. Biomed. Mater. 2022, 133, 105310. [Google Scholar] [CrossRef]
- Nakamichi, I.; Iwaku, M.; Fusayama, T. Bovine teeth as possible substitutes in the adhesion test. J. Dent. Res. 1983, 62, 1076–1081. [Google Scholar] [CrossRef]
- Taube, F.; Ylmén, R.; Shchukarev, A.; Nietzsche, S.; Norén, J.G. Morphological and chemical characterization of tooth enamel exposed to alkaline agents. J. Dent. 2010, 38, 72–81. [Google Scholar] [CrossRef]
- Khoubrouypak, Z.; Abbasi, M.; Ahmadi, E.; Rafeie, N.; Behroozibakhsh, M. Effect of Cold Atmospheric Pressure Plasma Coupled with Resin-Containing and Xylitol-Containing Fluoride Varnishes on Enamel Erosion. Int. J. Dent. 2021, 2021, 3298515. [Google Scholar] [CrossRef] [PubMed]
- Zanet, C.G.; Fava, M.; Alves, L.A.C. In Vitro evaluation of the microhardness of bovine enamel exposed to acid solutions after bleaching. Braz. Oral Res. 2011, 25, 562–567. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Fernández T, E.; Abbiati C, N.; Cabrera A, J.; Martínez M, R. Dental enamel micro-hardness for permanent central incisors in two beef cattle genotypes. Rev. MVZ Córdoba 2011, 16, 2310–2316. [Google Scholar][Green Version]
- Arango-Santander, S.; Montoya, C.; Pelaez-Vargas, A.; Ossa, E.A. Chemical, structural and mechanical characterization of bovine enamel. Arch. Oral Biol. 2020, 109, 104573. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, X.; Liu, Z.; Wang, Y.; Zou, L.; Chen, Y.; Han, Q. The effect of argon cold atmospheric plasma on the metabolism and demineralization of oral plaque biofilms. Front. Cell. Infect. Microbiol. 2023, 13, 1116021. [Google Scholar] [CrossRef]
- Möhring, S.; Cieplik, F.; Hiller, K.-A.; Ebensberger, H.; Ferstl, G.; Hermens, J.; Zaparty, M.; Witzgall, R.; Mansfeld, U.; Buchalla, W. Elemental compositions of enamel or dentin in human and bovine teeth differ from murine teeth. Materials 2023, 16, 1514. [Google Scholar] [CrossRef]
- Scholz, K.J.; Federlin, M.; Hiller, K.-A.; Ebensberger, H.; Ferstl, G.; Buchalla, W. EDX-analysis of fluoride precipitation on human enamel. Sci. Rep. 2019, 9, 13442. [Google Scholar] [CrossRef]
- Viana, P.S.; Orlandi, M.O.; Pavarina, A.C.; Machado, A.L.; Vergani, C.E. Chemical composition and morphology study of bovine enamel submitted to different sterilization methods. Clin. Oral Investig. 2018, 22, 733–744. [Google Scholar] [CrossRef]
- Park, S.-A.; Son, J.; Kim, A.-J.; Oh, S.; Bae, J.-M. Effect of adhesive components in experimental fluoride varnish on fluoride release within 30 days in vitro study. Dent. Mater. J. 2024, 43, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Lussi, A.; Bossen, A.; Höschele, C.; Beyeler, B.; Megert, B.; Meier, C.; Rakhmatullina, E. Effects of enamel abrasion, salivary pellicle, and measurement angle on the optical assessment of dental erosion. J. Biomed. Opt. 2012, 17, 097009. [Google Scholar] [CrossRef]
- Arnold, W.; Gaengler, P. Quantitative analysis of the calcium and phosphorus content of developing and permanent human teeth. Ann. Anat.-Anat. Anz. 2007, 189, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Mine, A.; Yoshida, Y.; Suzuki, K.; Nakayama, Y.; Yatani, H.; Kuboki, T. Spectroscopic characterization of enamel surfaces irradiated with Er: YAG laser. Dent. Mater. J. 2006, 25, 214–218. [Google Scholar] [CrossRef] [PubMed]
Group | Abbreviation | Treatment |
---|---|---|
Control | C | Polished + No treatment |
Helium gas | He | Polished + Helium Gas |
Helium Plasma | P | Polished + Helium Plasma Treatment |
Fluoride Varnish | V | Polished + Fluoride Varnish |
Plasma → Varnish | PV | Polished + Helium Plasma Treatment + Fluoride Varnish |
Varnish → Plasma | VP | Polished + Fluoride Varnish + Helium Plasma Treatment |
Plasma → Varnish → Plasma | PVP | Polished + Helium Plasma Treatment + Fluoride Varnish + Helium Plasma Treatment |
Element | |||||||
---|---|---|---|---|---|---|---|
Group | Day | Ca (at%) | P (at%) | Ca/P | F (at%) | C (at%) | O (at%) |
Control | Day_0 | 21.48 | 13.04 | 1.64 | 0.03 | 43.21 | 21.78 |
Day_1 | 21.54 | 13.12 | 1.63 | 0.02 | 42.41 | 21.29 | |
Day_2 | 21.59 | 13.20 | 1.62 | 0.02 | 42.15 | 21.20 | |
He-Gas | Day_0 | 20.96 | 13.14 | 1.59 | 0.05 | 42.35 | 22.58 |
Day_1 | 20.94 | 13.17 | 1.58 | 0.03 | 42.15 | 22.13 | |
Day_2 | 21.03 | 13.31 | 1.57 | 0.02 | 42.12 | 21.82 | |
He-Plasma | Day_0 | 21.77 | 12.85 | 1.69 | 0.06 | 25.60 | 36.03 |
Day_1 | 21.54 | 12.65 | 1.70 | 0.05 | 24.81 | 35.95 | |
Day_2 | 21.60 | 12.77 | 1.68 | 0.06 | 24.42 | 35.82 | |
Varnish | Day_0 | 23.36 | 11.76 | 1.98 | 2.29 | 33.11 | 28.37 |
Day_1 | 22.96 | 11.67 | 1.96 | 1.85 | 34.55 | 27.71 | |
Day_2 | 22.94 | 11.68 | 1.95 | 1.21 | 34.00 | 27.35 | |
Plasma-Varnish | Day_0 | 24.95 | 11.45 | 2.17 | 5.79 | 18.67 | 38.10 |
Day_1 | 23.88 | 11.53 | 2.13 | 5.24 | 18.68 | 37.78 | |
Day_2 | 23.78 | 11.60 | 2.13 | 4.79 | 18.38 | 37.36 | |
Varnish-Plasma | Day_0 | 24.49 | 12.06 | 2.02 | 4.39 | 19.19 | 37.35 |
Day_1 | 23.88 | 12.09 | 1.98 | 3.80 | 18.43 | 36.86 | |
Day_2 | 23.78 | 12.02 | 1.97 | 3.33 | 18.17 | 36.47 | |
Plasma-Varnish-Plasma | Day_0 | 24.78 | 10.08 | 2.45 | 8.09 | 17.79 | 38.34 |
Day_1 | 24.65 | 10.26 | 2.39 | 7.69 | 16.62 | 38.01 | |
Day_2 | 24.73 | 10.32 | 2.39 | 7.31 | 16.19 | 37.86 |
Time | Day_0 | Day_1 | Day_2 | |
---|---|---|---|---|
Groups | Mean ± SD | Mean ± SD | Mean ± SD | |
Control | 317.50 ± 47.84 a | 316.46 ± 32.83 a | 316.90 ± 25.51 a | |
He-gas | 336.73 ± 34.08 a | 319.60 ± 35.23 a | 304.96 ± 32.64 a | |
He-plasma | 402.20 ± 43.11 b | 370.23 ± 65.12 b | 359.50 ± 55.21 b | |
Varnish | 400.90 ± 115.10 b | 370.76 ± 75.33 b | 351.36 ± 71.27 b | |
Plasma-Varnish | 419.36 ± 28.63 bc | 396.53 ± 21.58 bc | 381.13 ± 23.41 bc | |
Varnish-Plasma | 398.56 ± 39.25 b | 369.23 ± 37.49 b | 382.53 ± 47.71 bc | |
Plasma-Varnish-Plasma | 437.43 ± 58.03 c | 430.57 ± 32.35 c | 455.87 ± 44.62 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fathollah, S.; Abbasi, H.; Ahmad Akhoundi, M.S. Combination of Cold Helium Plasma with Fluoride Varnish to Improve Enamel Surface Protection. Materials 2025, 18, 4466. https://doi.org/10.3390/ma18194466
Fathollah S, Abbasi H, Ahmad Akhoundi MS. Combination of Cold Helium Plasma with Fluoride Varnish to Improve Enamel Surface Protection. Materials. 2025; 18(19):4466. https://doi.org/10.3390/ma18194466
Chicago/Turabian StyleFathollah, Sara, Hossein Abbasi, and Mohammad Sadegh Ahmad Akhoundi. 2025. "Combination of Cold Helium Plasma with Fluoride Varnish to Improve Enamel Surface Protection" Materials 18, no. 19: 4466. https://doi.org/10.3390/ma18194466
APA StyleFathollah, S., Abbasi, H., & Ahmad Akhoundi, M. S. (2025). Combination of Cold Helium Plasma with Fluoride Varnish to Improve Enamel Surface Protection. Materials, 18(19), 4466. https://doi.org/10.3390/ma18194466