Study on the Influence and Performance of Nano SiO2 on Solid Waste Grouting Material
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Cement
2.1.2. Silica Fume, Fly Ash, and NS
2.1.3. Microstructure of Cementitious Materials
2.1.4. Fine Aggregate
2.1.5. Half Grouted Sleeve
2.2. Mix Design of Solid Waste Composite Materials with NS Admixture
2.3. Mechanical Property Test
2.4. Microscopic Test
2.5. Preparation of Grouting Sleeve and Joint Type Inspection
2.5.1. Preparation of Grouting Sleeve
2.5.2. Grout Coupling Joint Type Test
- 1.
- Residual deformation
- 2.
- Total elongation at maximum force
3. Results
3.1. The Effect of NS on the Compressive Strength and Flowability of Grout
3.2. Phase Analysis
3.3. Micro Mechanism Analysis
3.4. Analysis of Uniaxial Tensile Test
3.4.1. Fine Failure Form Analysis
3.4.2. Load–Displacement Curve Analysis
3.4.3. Stress–Strain Curve Analysis
4. Conclusions
- The addition of nanosilica (NS) reduces the flowability of the grout. Within the range of 0.2% to 1.0% NS content, the early compressive strength of the material is minimally affected; however, it significantly enhances the later-stage compressive strength of the cement-based grout. The optimal NS dosage is 0.4%, at which the 28-day compressive strength reaches a maximum of 105.5 MPa, representing an increase of 37.9% compared to the control group without NS.
- With the incorporation of NS, the hydration products such as ettringite (AFt), hydrated calcium aluminate, and tricalcium silicate in the grouting material increased. A large amount of NS can be adsorbed on the surfaces of silica fume, fly ash, and calcium hydroxide, which accelerates the consumption of calcium hydroxide, promotes the hydration process, and consequently facilitates the formation of hydration products such as AFt and C–S–H gel.
- The ultimate load capacity of grout sleeves increases with the size of both the rebar and the sleeve. Well-performing grout sleeves exhibit similar ascending stages in their load–displacement curves, including linear elastic, yielding, strain-hardening, and necking failure phases. Prior to rebar fracture, the strain in the sleeve wall increases approximately linearly with the increase in rebar stress.
- The solid waste cement-based grout containing nanosilica (NS) demonstrates good compatibility with semi-grout sleeves with a diameter of 16 mm and 18 mm. Among the tested dosages, the grout with 0.4% NS exhibits the best performance and strongest compatibility in pullout tests for both sleeve sizes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NS | Nanosilica |
CH | Calcium hydroxide |
SF | Silica fume |
FA | Fly ash |
SEM | Scanning electron microscopy |
XRD | X-ray diffraction |
References
- Zhao, G.; Qiu, J.; Zhao, Y.; Li, Y.; Wu, P.; Zhao, L. Study on the evaluation index system and combined weighting method for green mining of metal mines. J. Saf. Environ. 2020, 20, 2309–2316. [Google Scholar] [CrossRef]
- Singh, N.; Sharma, B.; Rathee, M. Carbonation resistance of blended mortars and industrial by-products: A brief review. Clean. Mater. 2022, 4, 100058. [Google Scholar] [CrossRef]
- Baltazar, L.G. Performance of silica fume-based geopolymer grouts for heritage masonry consolidation. Crystals 2022, 12, 288. [Google Scholar] [CrossRef]
- Zhao, Y.; Mao, S.; Sun, B.; Jin, Q.; Zhao, D. Experimental study on the grouted connection performance of reinforced sleeve after supplementary grouting repair. Build. Struct. 2024, 54, 152–156. [Google Scholar] [CrossRef]
- Xu, J.; Guo, F.; Sha, J.; Xu, H. Effect of grouting material on the grouted connection performance of reinforcement sleeves. New Build. Mater. 2020, 47, 53–56+75. [Google Scholar]
- Chai, Y.; Liang, X.; Liu, Y. Construction quality of prefabricated buildings using structural equation modeling. Appl. Sci. 2023, 13, 9629. [Google Scholar] [CrossRef]
- Xia, W.; Du, C.; Ding, L.; Cai, G.; Qu, C. Experimental study on the treatment of high-concentration heavy metal composite contaminated soil by compounding solidification materials. J. Saf. Environ. 2024, 24, 2797–2810. [Google Scholar] [CrossRef]
- Shi, J.; Pan, W.; Kang, J.; Yu, Z.; Sun, G.; Li, J.; Zheng, K.; Shen, J. Properties of Ultra-High Performance Concrete incorporating iron tailings powder and iron tailings sand. J. Build. Eng. 2024, 83, 108442. [Google Scholar] [CrossRef]
- Pan, Z.; Tan, M.; Zheng, G.; Wei, L.; Tao, Z.; Hao, Y. Effect of silica fume type on rheology and compressive strength of geopolymer mortar. Constr. Build. Mater. 2024, 430, 136488. [Google Scholar] [CrossRef]
- Dadashi, F.; Naderpour, H.; Mirrashid, M. Mechanical Property Prediction in Silica Fume and Crumb Rubber–Modified Concrete: Soft Computing and Experimental Approach. Pract. Period. Struct. Des. Constr. 2024, 29, 04024049. [Google Scholar] [CrossRef]
- Ainomugisha, S.; Matovu, M.J.; Manga, M. Influence mechanisms of silica nanoparticles’ property enhancement in cementitious materials and their green synthesis: A critical review. Case Stud. Constr. Mater. 2024, 20, e03372. [Google Scholar] [CrossRef]
- Zheng, Z.; Chen, X.; Zhou, C.; Kong, X. Research progress on the effect of nano-SiO2 on concrete properties. Concrete 2022, 104–109+115. [Google Scholar]
- Xie, X.; Zhang, S.; Qi, X.; Guo, S.; Ren, R. Status of research on the use of nanomodified microcapsules in cement-based materials. Processes 2024, 12, 128. [Google Scholar] [CrossRef]
- Wang, D.; Li, J.; Zhang, L.; Jiang, C.; Yang, P.; Cheng, X. Synthesis and effect of highly active nano-SiO2 on ion/water transmission property of cement-based materials. J. Build. Eng. 2022, 59, 105054. [Google Scholar] [CrossRef]
- Yao, C.; Ren, F.; Xu, S.; Wang, J.; Bao, J.; Chen, H.; Wei, G. The impact of nano-materials on the characteristics of cement-based materials and their practical use in engineering. Iran. J. Sci. Technol. Trans. Civ. Eng. 2024, 1–17. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, P.; Si, Z.; Ke, M.; Du, X. Study on the effect of combined nano-materials on the mechanical properties of concrete. Chin. J. Appl. Mech. 2023, 40, 788–796. [Google Scholar]
- Wu, S.; Dai, S.; Ma, B.; Zhang, T.; Yang, H.; Shang, L. Effect of nano-SiO2 on steel slag cement-based cementitious materials. Bull. Chin. Ceram. Soc. 2021, 40, 1594–1600. [Google Scholar] [CrossRef]
- Jiang, J.; Lu, C.; Shi, X.; Chen, L.; Zhao, J. Mechanical properties and water absorption characteristics of fly ash concrete modified with nano-SiO2. J. Archit. Civ. Eng. 2024, 41, 10–17. [Google Scholar] [CrossRef]
- Hu, H.; Wu, F.; Chen, J.; Guan, S.; Qu, P.; Zhang, H.; Chen, Y.; Xu, Z.; Huang, C.; Pu, S. Experimental Study on Cement-Based Materials Modified by Nano-Zinc Oxide and Nano-Zirconia Based on Response Surface Optimization Design. Materials 2025, 18, 1515. [Google Scholar] [CrossRef]
- Wang, P.; Li, C.; Du, Z.; Tian, L.; Yuan, Z.; Fu, H.; Li, W.; Jiang, S. Enhanced self-healing performance of cementitious materials using nano-SiO2 modified ethyl cellulose microcapsules. Constr. Build. Mater. 2025, 458, 139555. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, Z.; Wang, W.; Li, G.; Guo, H.; Zhang, H. Property enhancement and mechanism of cement-based composites from the perspective of nano-silica dispersion improvement. Case Stud. Constr. Mater. 2025, 22, e04125. [Google Scholar] [CrossRef]
- Wei, C. Study on the Effect of Nano-Silica on the Performance of Grouting Material for Rebar Sleeves. Ph.D. Thesis, Yangzhou University, Yangzhou, China, 2023. [Google Scholar]
- Zheng, Y.; Xi, X.; Liu, H.; Du, C.; Lu, H. A review: Enhanced performance of recycled cement and CO2 emission reduction effects through thermal activation and nanosilica incorporation. Constr. Build. Mater. 2024, 422, 135763. [Google Scholar] [CrossRef]
- JGJ 355-2015; Technical Specification for Grouted Connection of Rebar Sleeve. China Architecture & Building Press: Beijing, China, 2015.
- JG/T 398-2019; Grouting Sleeve for Rebar Connection. China Architecture & Building Press: Beijing, China, 2019.
- GB/T 17671-2021; Test Method for Strength of Cement Mortar (ISO Method). China Standards Press: Beijing, China, 2021.
- GB/T 2419-2005; Test Method for Fluidity of Cement Mortar. Standardization Administration of China: Beijing, China, 2005.
- GB/T 50448-2015; Technical Specification for Application of Cement-Based Grouting Materials. China Architecture & Building Press: Beijing, China, 2015.
Specific Surface Area (m2·kg−1) | Flexural Strength (MPa) | Compressive Strength (MPa) | Setting Time (min) | |||
---|---|---|---|---|---|---|
3 d | 28 d | 3 d | 28 d | Initial | Final | |
380 | 4.1 | 7.7 | 25.6 | 58.8 | 100 | 160 |
Fineness (nm) | 80~160 | 160~280 | ≥280 |
---|---|---|---|
Proportion | 28.4% | 45.2% | 26.4% |
Composition | CaO | SiO2 | Fe2O3 | MgO | K2O | NaO | C |
---|---|---|---|---|---|---|---|
Silica fume | 1.86 | 92.99 | 0.58 | 0.26 | 0.88 | 0.15 | 1.05 |
Fly ash | 1.08 | 58.69 | 5.89 | 2.82 | 0.23 | 0.28 | 0.88 |
Bulk Density (g·cm−3) | Density (g·cm−3) | Pureness (%) | Crystal Type |
---|---|---|---|
0.12 | 2.2–2.6 | 99.9 | sphericity |
Indicator | Bulk Density (g·cm−3) | Density (g·cm−3) | Porosity (%) | Fineness |
---|---|---|---|---|
quartz sand | 1.80 | 2.65 | 43.8 | 2.2 |
iron tailings sand | 1.15 | 1.49 | 49.4 | 2.1 |
Diameter (mm) | Tensile Strength (MPa) | Yield Strength (MPa) | Tensile to Yield Ratio | Yield Ratio |
---|---|---|---|---|
16 | 620 | 460 | 1.34 | 1.25 |
18 | 625 | 450 | 1.38 | 1.28 |
Sleeve Category | Quality (kg) | Diameter (mm) | Sleeve Length (mm) | Thread Segment Length (mm) |
---|---|---|---|---|
D16 | 0.58 | 38.5 | 174 | 26 |
D18 | 0.79 | 42 | 193 | 29 |
Group | Silica Fume (g) | Fly Ash (g) | Quartz Sand (g) | Iron Tailings Sand (g) | NS Proportion (%) | Cement (g) | Water (g) |
---|---|---|---|---|---|---|---|
G2 | 135 | 45 | 720 | 180 | / | 720 | 288 |
N1 | 135 | 45 | 720 | 180 | 0.2 | 720 | 288 |
N2 | 135 | 45 | 720 | 180 | 0.4 | 720 | 288 |
N3 | 135 | 45 | 720 | 180 | 0.6 | 720 | 288 |
N4 | 135 | 45 | 720 | 180 | 0.8 | 720 | 288 |
N5 | 135 | 45 | 720 | 180 | 1.0 | 720 | 288 |
Uniaxial Tension | Percentage total extension at maximum force (%) | Asgt ≥ 6.0 |
Residual deformation (mm) | u0 ≤ 0.10 (d ≤ 32) | |
u0 ≥ 0.14 (d > 32) |
Group | Sleeve Size (mm) | Displacement (mm) | Ultimate Tensile Load (kN) | u0 (mm) | Failure Mode | |
---|---|---|---|---|---|---|
B | 16 | 28.05 | 113.20 | 0.08 | 4.62 | pulled out |
31.13 | 116.92 | 0.08 | 4.88 | pulled out | ||
18 | 12.54 | 130.48 | 1.0 | 4.23 | pulled out | |
25.14 | 139.66 | 0.07 | 7.21 | pulled out | ||
N1 | 16 | 49.82 | 127.65 | 0.04 | 10.82 | pulled apart |
45.03 | 121.63 | 0.05 | 10.36 | pulled apart | ||
18 | 48.52 | 152.67 | 0.04 | 12.41 | pulled apart | |
38.57 | 156.75 | 0.08 | 12.12 | pulled out | ||
N2 | 16 | 47.04 | 128.41 | 0.05 | 10.87 | pulled apart |
49.23 | 127.83 | 0.04 | 10.75 | pulled apart | ||
18 | 52.34 | 162.56 | 0.06 | 12.69 | pulled apart | |
48.73 | 161.68 | 0.06 | 12.68 | pulled apart | ||
N3 | 16 | 52.18 | 126.83 | 0.04 | 10.77 | pulled apart |
54.04 | 128.50 | 0.05 | 10.82 | pulled apart | ||
18 | 40.75 | 159.43 | 1.0 | 8.92 | pulled out (threaded end) | |
48.78 | 160.22 | 0.07 | 12.32 | pulled apart | ||
N4 | 16 | 45.58 | 126.62 | 0.04 | 10.82 | pulled apart |
48.94 | 127.91 | 0.05 | 10.36 | pulled apart (threaded end) | ||
18 | 38.55 | 156.56 | 0.09 | 7.63 | pulled out | |
43.14 | 153.46 | 0.09 | 7.55 | pulled out | ||
N5 | 16 | 47.29 | 127.28 | 0.06 | 10.89 | pulled apart |
47.03 | 127.53 | 0.05 | 10.92 | pulled apart | ||
18 | 42.61 | 158.05 | 0.06 | 11.87 | pulled apart | |
19.25 | 133.45 | 0.08 | 5.16 | pulled out |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Wang, L.; Chen, J.; Chen, H.; Wu, W.; Li, J.; Lu, H.; Hu, D.; Huang, H. Study on the Influence and Performance of Nano SiO2 on Solid Waste Grouting Material. Materials 2025, 18, 4110. https://doi.org/10.3390/ma18174110
Zhang H, Wang L, Chen J, Chen H, Wu W, Li J, Lu H, Hu D, Huang H. Study on the Influence and Performance of Nano SiO2 on Solid Waste Grouting Material. Materials. 2025; 18(17):4110. https://doi.org/10.3390/ma18174110
Chicago/Turabian StyleZhang, Huifang, Lei Wang, Jie Chen, Haiyang Chen, Wei Wu, Jinzhu Li, Henan Lu, Dongxiao Hu, and Hongliang Huang. 2025. "Study on the Influence and Performance of Nano SiO2 on Solid Waste Grouting Material" Materials 18, no. 17: 4110. https://doi.org/10.3390/ma18174110
APA StyleZhang, H., Wang, L., Chen, J., Chen, H., Wu, W., Li, J., Lu, H., Hu, D., & Huang, H. (2025). Study on the Influence and Performance of Nano SiO2 on Solid Waste Grouting Material. Materials, 18(17), 4110. https://doi.org/10.3390/ma18174110