Pyrolysis Kinetics-Driven Resin Optimization for Enhanced Reliability in Ceramic Vat Photopolymerization Manufacturing
Abstract
1. Introduction
2. Experiments and Methods
2.1. Raw Materials of Si3N4 Ceramics
2.2. Preparation of Ceramic Slurry
2.3. Preparation of Si3N4 Ceramics
2.4. Characterization
2.5. Pyrolysis Kinetics Model
2.6. Numerical Analysis of Gas Pressure During Debinding
3. Results and Discussion
3.1. Printing Properties of Slurry
3.2. Thermogravimetric Analysis of Green Body
3.3. 3-DAEM Kinetics Analysis of Pyrolysis
3.4. Gas Pressure in Green Body
3.5. Debinding and Sintering
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zheng, W.; Wu, J.-M.; Chen, S.; Wang, C.-S.; Liu, C.-L.; Hua, S.-B.; Yu, K.-B.; Zhang, J.; Zhang, J.-X.; Shi, Y.-S. Influence of Al2O3 content on mechanical properties of silica-based ceramic cores prepared by stereolithography. J. Adv. Ceram. 2021, 10, 1381–1388. [Google Scholar] [CrossRef]
- Li, F.-F.; Ma, N.-N.; Chen, J.; Zhu, M.; Chen, W.-H.; Huang, C.-C.; Huang, Z.-R. SiC ceramic mirror fabricated by additive manufacturing with material extrusion and laser cladding. Addit. Manuf. 2022, 58, 102994. [Google Scholar] [CrossRef]
- Solórzano-Requejo, W.; Martínez Cendrero, A.; Altun, A.A.; Nohut, S.; Ojeda, C.; García Molleja, J.; Molina-Aldareguia, J.; Schwentenwein, M.; Díaz Lantada, A. Topology optimisation and lithography-based ceramic manufacturing of short-stem hip prostheses with enhanced biomechanical and mechanobiological performance. Virtual Phys. Prototyp. 2024, 19, e2387280. [Google Scholar] [CrossRef]
- Montazerian, M.; Baino, F.; Fiume, E.; Migneco, C.; Alaghmandfard, A.; Sedighi, O.; DeCeanne, A.V.; Wilkinson, C.J.; Mauro, J.C. Glass-ceramics in dentistry: Fundamentals, technologies, experimental techniques, applications, and open issues. Prog. Mater. Sci. 2023, 132, 101023. [Google Scholar] [CrossRef]
- Kostretsova, N.; Pesce, A.; Hofmann, C.; Neuberg, S.; Babeli, I.; Nuñez, M.; Morata, A.; Kolb, G.; Torrell, M.; Tarancón, A. Enhanced CO2 methanation with ceramic 3d printed catalyst bed reactor. Chem. Eng. J. 2025, 511, 161752. [Google Scholar] [CrossRef]
- Gao, C.; Li, X.; Xu, W.; Chen, Y.; Luo, T.; Gao, R.; Cui, J.; Chu, X.; Wen, X.; Zhou, W. 3D printing of carbon/ceramic conductive composites as joule-heating catalyst support for hydrogen production. Addit. Manuf. 2025, 98, 104644. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, X.; Chen, X.; He, Y.; Cheng, L.; Huo, M.; Yin, J.; Hao, F.; Chen, S.; Wang, P.; et al. Additive manufacturing of structural materials. Mater. Sci. Eng. R Rep. 2021, 145, 100596. [Google Scholar] [CrossRef]
- Rasaki, S.A.; Xiong, D.; Xiong, S.; Su, F.; Idrees, M.; Chen, Z. Photopolymerization-based additive manufacturing of ceramics: A systematic review. J. Adv. Ceram. 2021, 10, 442–471. [Google Scholar] [CrossRef]
- Miao, W.-J.; Wang, S.-Q.; Wang, Z.-H.; Wu, F.-B.; Zhang, Y.-Z.; Ouyang, J.-H.; Wang, Y.-M.; Zou, Y.-C. Additive manufacturing of advanced structural ceramics for tribological applications: Principles, techniques, microstructure and properties. Lubricants 2025, 13, 112. [Google Scholar] [CrossRef]
- Kanehira, S.; Kirihara, S.; Miyamoto, Y. Fabrication of TiO2–SiO2 photonic crystals with diamond structure. J. Am. Ceram. Soc. 2005, 88, 1461–1464. [Google Scholar] [CrossRef]
- Li, B.; Li, Z.; Cooperstein, I.; Shan, W.; Wang, S.; Jiang, B.; Zhang, L.; Magdassi, S.; He, J. Additive manufacturing of transparent multi-component nanoporous glasses. Adv. Sci. 2023, 10, e2305775. [Google Scholar] [CrossRef]
- Zhao, J.-J.; Zhang, Y.-Z.; Li, J.-H.; Wang, Z.-H.; Miao, W.-J.; Wu, F.-B.; Wang, S.-Q.; Ouyang, J.-H. Additive manufacturing of alumina-based ceramic structures by vat photopolymerization: A review of strategies for improving shaping accuracy and properties. Materials 2025, 18, 2445. [Google Scholar] [CrossRef]
- He, R.; Liu, W.; Wu, Z.; An, D.; Huang, M.; Wu, H.; Jiang, Q.; Ji, X.; Wu, S.; Xie, Z. Fabrication of complex-shaped zirconia ceramic parts via a dlp-stereolithography-based 3d printing method. Ceram. Int. 2018, 44, 3412–3416. [Google Scholar] [CrossRef]
- Wang, Z.H.; Zhang, Y.Z.; Miao, W.J.; Wu, F.B.; Wang, S.Q.; Ouyang, J.H.; Wang, Y.M.; Zou, Y.C. Vat photopolymerization-based additive manufacturing of Si3N4 ceramic structures: Printing optimization, debinding/sintering, and applications. Materials 2025, 18, 1556. [Google Scholar] [CrossRef]
- Sheng, P.; Nie, G.; Li, Y.; Wang, L.; Chen, J.; Deng, X.; Wu, S. Enhanced Curing Behavior, Mechanical and thermal properties of 3d printed aluminum nitride ceramics using a powder coating strategy. Addit. Manuf. 2023, 74, 103732. [Google Scholar] [CrossRef]
- Qu, P.; Liang, G.; Hussain, M.I.; Hanif, M.; Hamza, M.; Huang, K.; Lou, Y.; Chen, Z. Low-temperature fabrication of high-specific strength SiC-based ceramics via photopolymerization 3d printing with controllable anisotropy. Int. J. Extrem. Manuf. 2025, 7, 055002. [Google Scholar] [CrossRef]
- Eckel, Z.C.; Zhou, C.; Martin, J.H.; Jacobsen, A.J.; Carter, W.B.; Schaedler, T.A. Additive manufacturing of polymer-derived ceramics. Science 2016, 351, 58–62. [Google Scholar] [CrossRef]
- Yu, X.; Zhao, Y.; Wang, Z.; Wang, Y.; Yu, Z.; Zhong, K.; Zhao, J. Microstructure formation mechanisms and property regulation methods during ceramic additive manufacturing. J. Manuf. Process. 2024, 131, 1548–1564. [Google Scholar] [CrossRef]
- Ma, W.; Zheng, K.; Quan, Y.; Lian, Q.; Zhuang, J.; Qi, C.; Qi, S.; Zhang, J.; Li, H.; Liu, W.; et al. High-precision complex structured Sm-PMN-PT ceramics with large piezoelectric response manufactured by vat photopolymerization. Addit. Manuf. 2024, 84, 104116. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, G.; Wang, C.; Zhang, Y.; Yan, C.; Shi, Y. Thermal debinding for stereolithography additive manufacturing of advanced ceramic parts: A comprehensive review. Mater. Des. 2024, 238, 112632. [Google Scholar] [CrossRef]
- Gu, Q.; Wang, H.; Gao, W.; Yu, J.; Zhou, X. Preparation of large-size alumina ceramic parts by dlp 3d printing using high-solid-loading paste and optimizing the debinding process. Ceram. Int. 2023, 49, 28801–28812. [Google Scholar] [CrossRef]
- Marie, T.; Du, Z.; Gan, C.L.; Marinel, S.; Sridharan, V.S.; Manière, C. Debinding and sintering optimization of stereolithography based silicon nitride parts for attaining centimetric wall-thickness shapes. J. Eur. Ceram. Soc. 2025, 45, 116911. [Google Scholar] [CrossRef]
- Li, J.; Zhang, C.; Yin, R.; Zhang, W. DAEM kinetics analysis and finite element simulation of thermal debinding process for a gelcast SiAlON green body. Ceram. Int. 2019, 45, 8166–8174. [Google Scholar] [CrossRef]
- Zhao, K.; Ye, Z.; Su, Z.; Cao, W.; Shi, D.; Hao, X.; Zhang, S.; Wang, Z.; Xu, X.; Zhu, J. A diffusion-controlled kinetic model for binder burnout in a green part fabricated by binder jetting based on the thermal decomposition kinetics of TEG-DMA. Addit. Manuf. 2025, 105, 104793. [Google Scholar] [CrossRef]
- Kumar, A.; Gokhale, A.; Ghosh, S.; Aravindan, S. Effect of nano-sized sintering additives on microstructure and mechanical properties of Si3N4 ceramics. Mater. Sci. Eng. A 2019, 750, 132–140. [Google Scholar] [CrossRef]
- Li, Y.; Huang, S.; Wang, S.; Zhang, X.; Wang, Y.; Lu, B.; Luo, Y.; He, F.; Liu, W.; Wu, S. Research on the effects of surface modification of ceramic powder on cure performance during digital light processing (dlp). Ceram. Int. 2022, 48, 3652–3658. [Google Scholar] [CrossRef]
- Drobecq, I.; Bigot, C.; Soppera, O.; Malaquin, L.; Venzac, B. Optimizing dimensional accuracy in two-photon polymerization: Influence of energy dose and proximity effects on sub-micrometric fiber structures. Addit. Manuf. 2025, 103, 104735. [Google Scholar] [CrossRef]
- ISO 14704:2016; Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Test Method for Flexural Strength of Monolithic Ceramics at Room Temperature. ISO: Geneva, Switzerland, 2016. Available online: https://www.iso.org/standard/65411.html (accessed on 31 May 2025).
- Zou, J.; Hu, H.; Rahman, M.M.; Yellezuome, D.; He, F.; Zhang, X.; Cai, J. Non-isothermal pyrolysis of xylan, cellulose and lignin: A hybrid simulated annealing algorithm and pattern search method to regulate distributed activation energies. Ind. Crops Prod. 2022, 187, 115501. [Google Scholar] [CrossRef]
- Chen, Z.; Hu, M.; Zhu, X.; Guo, D.; Liu, S.; Hu, Z.; Xiao, B.; Wang, J.; Laghari, M. Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis. Bioresour. Technol. 2015, 192, 441–450. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011, 520, 1–19. [Google Scholar] [CrossRef]
- Senum, G.I.; Yang, R.T. Rational approximations of the integral of the arrhenius function. J. Therm. Anal. 1977, 11, 445–447. [Google Scholar] [CrossRef]
- Koga, N. A review of the mutual dependence of arrhenius parameters evaluated by the thermoanalytical study of solid-state reactions: The kinetic compensation effect. Thermochim. Acta 1994, 244, 1–20. [Google Scholar] [CrossRef]
- Das, P.; Tiwari, P. Thermal degradation kinetics of plastics and model selection. Thermochim. Acta 2017, 654, 191–202. [Google Scholar] [CrossRef]
- Várhegyi, G.; Bobály, B.; Jakab, E.; Chen, H. Thermogravimetric study of biomass pyrolysis kinetics: A distributed activation energy model with prediction tests. Energy Fuels 2010, 25, 24–32. [Google Scholar] [CrossRef]
- Jain, A.A.; Mehra, A.; Ranade, V.V. Processing of TGA data: Analysis of isoconversional and model fitting methods. Fuel 2016, 165, 490–498. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, Z.; Dai, M.; Fang, S.; Liao, Y.; Yu, Z.; Ma, X. Co-pyrolysis kinetics of sewage sludge and bagasse using multiple normal distributed activation energy model (M-DAEM). Bioresour. Technol. 2018, 259, 173–180. [Google Scholar] [CrossRef]
- Tsai, D.S. Pressure buildup and internal stresses during binder burnout: Numerical analysis. AIChE J. 2004, 37, 547–554. [Google Scholar] [CrossRef]
- Feng, K.; Lombardo, S.J. Modeling of the pressure distribution in three-dimensional porous green bodies during binder removal. J. Am. Ceram. Soc. 2004, 86, 234–240. [Google Scholar] [CrossRef]
- Tseng, C.-C.; Li, K.-L.; Chao, J.-H. Numerical investigations of the binder burnout process during the MLCC manufacturing. Appl. Therm. Eng. 2025, 263. [Google Scholar] [CrossRef]
- Doménech-Carbó, M.T.; Bitossi, G.; Osete-Cortina, L.; Yusá-Marco, D.J. Study of ageing of ketone resins used as picture varnishes by pyrolysis–silylation–gas chromatography–mass spectrometry. J. Anal. Appl. Pyrolysis 2009, 85, 470–479. [Google Scholar] [CrossRef]
- Matsubara, H.; Yoshida, A.; Kondo, Y.; Tsuge, S.; Ohtani, H. Characterization of network structures in UV-cured acrylic ester resin by pyrolysis−gas chromatography in the presence of organic alkali. Macromolecules 2003, 36, 4750–4755. [Google Scholar] [CrossRef]
- Matsubara, H.; Yoshida, A.; Ohtani, H.; Tsuge, S. Compositional analysis of UV-cured acrylic ester resins by pyrolysis–gas chromatography in the presence of organic alkali. J. Anal. Appl. Pyrolysis 2002, 64, 159–175. [Google Scholar] [CrossRef]
- Gallant, R.W. Physical Properties of Hydrocarbons; Gulf Publishing Company: Houston, TX, USA, 1968; p. 227. [Google Scholar]
- Li, K.; Zhao, Z. The effect of the surfactants on the formulation of UV-curable SLA alumina suspension. Ceram. Int. 2017, 43, 4761–4767. [Google Scholar] [CrossRef]
- Oezkan, B.; Sameni, F.; Karmel, S.; Engstrøm, D.S.; Sabet, E. A systematic study of vat-polymerization binders with potential use in the ceramic suspension 3d printing. Addit. Manuf. 2021, 47, 102225. [Google Scholar] [CrossRef]
- Li, X.; Su, H.; Dong, D.; Jiang, H.; Liu, Y.; Shen, Z.; Guo, Y.; Zhang, Z.; Guo, M. Selection strategy of curing depth for vat photopolymerization 3d printing of Al2O3 ceramics. Addit. Manuf. 2024, 88, 104240. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Li, Y.; Shi, X.; Che, B. Determination of ignition temperature and kinetics and thermodynamics analysis of high-volatile coal based on differential derivative thermogravimetry. Energy 2022, 240, 122493. [Google Scholar] [CrossRef]
- Órfão, J.J.M. Review and evaluation of the approximations to the temperature integral. AIChE J. 2007, 53, 2905–2915. [Google Scholar] [CrossRef]
Samples | HEA a | HDDA a | PPTTA a | Dispersant b wt.% | Photoinitiator a wt.% | Ceramics c vol.% |
---|---|---|---|---|---|---|
vol.% | ||||||
S1 | 60 | 40 | / | 3 | 1 | 40 |
S2 | / | 40 | 60 | |||
S3 | 30 | 40 | 30 |
Symbol and Description | Value and Units |
---|---|
initial temperature | 373.15 K |
final temperature | 873.15 K |
heating rate | 5 K/min |
radius of green body | 2 mm |
volume fraction of ceramic particles | 0.40 |
volume fraction of initial pores | 0.05 |
diameter of ceramic particles | 0.7 μm |
molecular mass of pyrolysis gas | 0.086089 kg/mol |
the density of cured resin | S1 1069.88 kg/m3 |
S2 1094.60 kg/m3 | |
S3 1082.24 kg/m3 |
Samples | Pseudo-Components | (kJ/mol) | (kJ/mol) | ||
---|---|---|---|---|---|
S1 | P1 | 62.11 | 0.73 | 8 | 0.03 |
P2 | 215.32 | 2.66 | 17 | 0.64 | |
P3 | 233.12 | 29.03 | 19 | 0.34 | |
S2 | P1 | 102.45 | 8.26 | 8 | 0.11 |
P2 | 128.12 | 150.14 | 17 | 0.04 | |
P3 | 238.28 | 6.63 | 19 | 0.85 | |
S3 | P1 | 101.08 | 4.90 | 8 | 0.24 |
P2 | 216.26 | 3.27 | 17 | 0.64 | |
P3 | 199.43 | 72.94 | 19 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.-Z.; Wang, Z.-H.; Miao, W.-J.; Wu, F.-B.; Wang, S.-Q.; Ouyang, J.-H.; Wang, Y.-M.; Zou, Y.-C. Pyrolysis Kinetics-Driven Resin Optimization for Enhanced Reliability in Ceramic Vat Photopolymerization Manufacturing. Materials 2025, 18, 4004. https://doi.org/10.3390/ma18174004
Zhang Y-Z, Wang Z-H, Miao W-J, Wu F-B, Wang S-Q, Ouyang J-H, Wang Y-M, Zou Y-C. Pyrolysis Kinetics-Driven Resin Optimization for Enhanced Reliability in Ceramic Vat Photopolymerization Manufacturing. Materials. 2025; 18(17):4004. https://doi.org/10.3390/ma18174004
Chicago/Turabian StyleZhang, Yun-Zhuo, Zi-Heng Wang, Wei-Jian Miao, Fan-Bin Wu, Shu-Qi Wang, Jia-Hu Ouyang, Ya-Ming Wang, and Yong-Chun Zou. 2025. "Pyrolysis Kinetics-Driven Resin Optimization for Enhanced Reliability in Ceramic Vat Photopolymerization Manufacturing" Materials 18, no. 17: 4004. https://doi.org/10.3390/ma18174004
APA StyleZhang, Y.-Z., Wang, Z.-H., Miao, W.-J., Wu, F.-B., Wang, S.-Q., Ouyang, J.-H., Wang, Y.-M., & Zou, Y.-C. (2025). Pyrolysis Kinetics-Driven Resin Optimization for Enhanced Reliability in Ceramic Vat Photopolymerization Manufacturing. Materials, 18(17), 4004. https://doi.org/10.3390/ma18174004