A Cyclodextrin Polymer for the Removal of Pharmaceuticals as Environmental Pollutants from Water, as Illustrated by the Example of Methylene Blue as a Model Compound
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of β-Cyclodextrin Polymer Crosslinked by Citric Acid (CDCAPol)
2.3. Analyses
2.3.1. FT-IR Measurement
2.3.2. Raman Measurement
2.3.3. pH Measurement
2.3.4. Scanning Electron Microscopy (SEM), Brunauer–Emmett–Teller (BET), and X-Ray Powder Diffraction (XRD) Analyses
2.4. Sorption Tests
2.5. Sorption Isotherms and Kinetics
3. Results and Discussion
3.1. Citric Acid–Linked β-Cyclodextrin Polymer
3.2. The Characterization of the β-CD Polymer
3.3. Sorption Process Depending on Variable Process Parameters
3.4. Sorption Behavior
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wilkinson, J.L.; Thornhill, I.; Oldenkamp, R.; Gachanja, A.; Busquets, R. Pharmaceuticals and Personal Care Products in the Aquatic Environment: How Can Regions at Risk be Identified in the Future? Environ. Toxicol. Chem. 2024, 43, 575–588. [Google Scholar] [CrossRef]
- Boxall, A.B.A.; Brooks, B.W. Pharmaceuticals and Personal Care Products in the Environment: What Progress Has Been Made in Addressing the Big Research Questions? Environ. Toxicol. Chem. 2024, 43, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Sharif, A.; Ashraf, M.; Anjum, A.A.; Javeed, A.; Altaf, I.; Akhtar, M.F.; Abbas, M.; Akhtar, B.; Saleem, A. Pharmaceutical wastewater being composite mixture of environmental pollutants may be associated with mutagenicity and genotoxicity. Environ. Sci. Pollut. Res. 2016, 23, 2813–2820. [Google Scholar] [CrossRef]
- Chander, V.; Sharma, B.; Negi, V.; Aswal, R.S.; Singh, P.; Singh, R.; Dobhal, R. Pharmaceutical Compounds in Drinking Water. J. Xenobiot. 2016, 6, 5774. [Google Scholar] [CrossRef] [PubMed]
- Manaia, C.M.; Aga, D.S.; Cytryn, E.; Gaze, W.H.; Graham, D.W.; Guo, J.; Leonard, A.F.C.; Li, L.; Murray, A.K.; Nunes, O.C.; et al. The Complex Interplay Between Antibiotic Resistance and Pharmaceutical and Personal Care Products in the Environment. Environ. Toxicol. Chem. 2024, 43, 637–652. [Google Scholar] [CrossRef]
- Martinez, J.L. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut. 2009, 157, 2893–2902. [Google Scholar] [CrossRef] [PubMed]
- Hyungkeun, R.; Nethra, S.; Fuman, Z.; Chang-Ping, Y.; Justin, S.; Kung-Hui, C. Biodegradation potential of wastewater micropollutants by ammonia-oxidizing bacteria. Chemosphere 2009, 77, 1084–1089. [Google Scholar] [CrossRef]
- Yu, C.-P.; Roh, H.; Chu, K.-H. 17β-Estradiol-Degrading Bacteria isolated from Activated Sludge. Environ. Sci. Technol. 2007, 41, 486–492. [Google Scholar] [CrossRef]
- Samal, K.; Mahapatra, S.; Ali, H. Pharmaceutical wastewater as Emerging Contaminants (EC): Treatment technologies, impact on environment and human health. Energy Nexus 2022, 6, 100076. [Google Scholar] [CrossRef]
- Eapen, J.V.; Thomas, S.; Antony, S.; George, P.; Antony, J. A review of the effects of pharmaceutical pollutants on humans and aquatic ecosystem. Explor. Drug Sci. 2024, 2, 484–507. [Google Scholar] [CrossRef]
- Leyva-Díaz, J.C.; Batlles-delaFuente, A.; Molina-Moreno, V.; Sánchez Molina, J.; Belmonte-Ureña, L.J. Removal of Pharmaceuticals from Wastewater: Analysis of the Past and Present Global Research Activities. Water 2021, 13, 2353. [Google Scholar] [CrossRef]
- Hübner, U.; Spahr, S.; Lutze, H.; Wieland, A.; Rüting, S.; Gernjak, W.; Wenk, J. Advanced oxidation processes for water and wastewater treatment—Guidance for systematic future research. Heliyon 2024, 10, e30402. [Google Scholar] [CrossRef]
- Coha, M.; Farinelli, G.; Tiraferri, A.; Minella, M.; Vione, D. Advanced oxidation processes in the removal of organic substances from produced water: Potential, configurations, and research needs. Chem. Eng. J. 2021, 414, 128668. [Google Scholar] [CrossRef]
- Meng, F.; Chae, S.-R.; Drews, A.; Kraume, M.; Shin, H.-S.; Yang, F. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Res. 2009, 43, 1489–1512. [Google Scholar] [CrossRef]
- Bohli, T.; Bourezgui, A.; Maiz, F.; Ouederni, A. Removal of a pharmaceutical compound using olive stone-derived activated carbon: Artificial neural network modeling, equilibrium analysis, and fixed-bed kinetic assessment. Mater. Today Commun. 2025, 45, 112200. [Google Scholar] [CrossRef]
- Ren, G.; Han, H.; Wang, Y.; Liu, S.; Zhao, J.; Meng, X.; Li, Z. Recent Advances of Photocatalytic Application in Water Treatment: A Review. Nanomaterials 2021, 11, 1804. [Google Scholar] [CrossRef] [PubMed]
- Yousef, R.; Qiblawey, H.; El-Naas, M.H. Adsorption as a Process for Produced Water Treatment: A Review. Processes 2020, 8, 1657. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. Application of 884 biochar for the removal of pollutants from aqueous solutions. Chemosphere 2015, 125, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, G.; Liu, W. Preparation of water-soluble β-cyclodextrin/poly(acrylic acid)/grapheme oxide nanocomposites as new adsorbents to remove cationic dyes from aqueous solutions. Chem. Eng. J. 2014, 257, 299–308. [Google Scholar] [CrossRef]
- Huang, W.; Hu, Y.; Li, Y.; Zhou, Y.; Niu, D.; Lei, Z.; Zhang, Z. Citric acid-crosslinked β-cyclodextrin for simultaneous removal of bisphenol A, methylene blue and copper: The roles of cavity and surface functional groups. J. Taiwan Inst. Chem. Eng. 2018, 82, 189–197. [Google Scholar] [CrossRef]
- Darabdhara, J.; Ahmaruzzaman, M. Recent developments in MOF and MOF based composite as potential adsorbents for removal of aqueous environmental contaminants. Chemosphere 2022, 304, 135261. [Google Scholar] [CrossRef]
- Martinez-Boubeta, C.; Simeonidis, K. Magnetic Nanoparticles for Water Purification. In Micro and Nano Technologies, Nanoscale Materials in Water Purification; Thomas, S., Pasquini, D., Leu, S.-Y., Gopakumar, D.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 521–552. [Google Scholar]
- Dai, C.-M.; Zhang, J.; Zhang, Y.-L.; Zhou, X.-F.; Duan, Y.-P.; Liu, S.-G. Selective removal of acidic pharmaceuticals from contaminated lake water using multi-templates molecularly imprinted polymer. Chem. Eng. J. 2012, 211–212, 302–309. [Google Scholar] [CrossRef]
- Cova, T.F.; Murtinho, D.; Aguado, R.; Pais, A.A.C.C.; Valente, A.J.M. Cyclodextrin Polymers and Cyclodextrin-Containing Polysaccharides for Water Remediation. Polysaccharides 2021, 2, 16–38. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, Y.; Lu, J.; Zhou, Y. Novel cyclodextrin-based absorbents for removing pollutants from wastewater: A critical review. Chemosphere 2019, 241, 125043. [Google Scholar] [CrossRef] [PubMed]
- Bonilla-Petriciolet, A.; Mendoza-Castillo, D.L.; Reynel-Ávila, H.L. Adsorption Processes for Water Treatment and Purification; Springer International Publishing AG: Cham, Switzerland, 2017; ISBN 978-3-319-58135-4. [Google Scholar] [CrossRef]
- Lagiewka, J.; Nowik-Zajac, A.; Pajdak, A.; Zawierucha, I. A novel multifunctional β-cyclodextrin polymer as a promising sorbent for rapid removal of methylene blue from aqueous solutions. Carbohydr. Polym. 2023, 307, 120615. [Google Scholar] [CrossRef]
- Jiang, H.-L.; Lin, J.-C.; Hai, W.; Tan, H.-W.; Luo, Y.-W.; Xie, X.-L.; Cao, Y.; He, F.-A. A novel crosslinked β-cyclodextrin-based polymer for removing methylene blue from water with high efficiency. Colloids Surf. 2019, 560 (Suppl. A), 59–68. [Google Scholar] [CrossRef]
- Zhao, D.; Zhao, L.; Zhu, C.-S.; Huang, W.-Q.; Hu, J.-L. Water-Insoluble β-Cyclodextrin Polymer Crosslinked by Citric Acid: Synthesis and Adsorption Properties toward Phenol and Methylene Blue. J. Incl. Phenom. Macrocycl. Chem. 2008, 63, 195–201. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, Y.; Li, X.; Sun, B.; Jiang, Z.; Wang, C. Water-insoluble sericin/β-cyclodextrin/PVA composite electrospun nanofibers as effective adsorbents towards methylene blue. Colloids Surf. B Biointerfaces 2015, 136, 375–382. [Google Scholar] [CrossRef]
- Wang, J.; Dai, L.; Liu, Y.; Li, R.; Yang, X.; Lan, G.; Qiu, H.; Xu, B. Adsorption properties of β-cyclodextrin modified hydrogel for methylene blue. Carbohydr. Res. 2021, 501, 108276. [Google Scholar] [CrossRef]
- Ducoroy, L.; Martel, B.; Bacquet, B.; Morcellet, M. Ion exchange textiles from the finishing of PET fabrics with cyclodextrins and citric acid for the sorption of metallic cations in water. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, 271–277. [Google Scholar] [CrossRef]
- Duhan, M.; Kaur, R. Nano-Structured Polyaniline as a Potential Adsorbent for Methylene Blue Dye Removal from Effluent. J. Compos. Sci. 2021, 5, 7. [Google Scholar] [CrossRef]
- Crini, G.; Badot, P.-M. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog. Polym. Sci. 2008, 33, 399–447. [Google Scholar] [CrossRef]
- Gupta, V.K.; Suhas. Application of low-cost adsorbents for dye removal—A review. J. Environ. Manag. 2009, 90, 2313–2342. [Google Scholar] [CrossRef] [PubMed]
Langmuir Isotherm | Freundlich Isotherm | Temkin Isotherm | |||||||
---|---|---|---|---|---|---|---|---|---|
k | Vm | R2 | Kf | n | R2 | KT | b | R2 | |
MB | 1.68 | 126.58 | 0.9985 | 74.22 | 1.61 | 0.9779 | 24.73 | 0.10 | 0.9780 |
qe dośw mg/g | Pseudo-First-Order Kinetic Equation | Pseudo-Second-Order Kinetic Equation | |||||
---|---|---|---|---|---|---|---|
k1 L/min | qe obl mg/g | R2 | k2 g/mg min | qe obl mg/g | R2 | ||
MB | 49.58 | 0.22 | 5.17 | 0.8977 | 0.18 | 49.75 | 0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawierucha, I.; Lagiewka, J.; Kapusniak, P.; Kulawik, D.; Zarska, S.; Girek, T.; Ciesielska, A.; Girek-Bak, M.; Ciesielski, W. A Cyclodextrin Polymer for the Removal of Pharmaceuticals as Environmental Pollutants from Water, as Illustrated by the Example of Methylene Blue as a Model Compound. Materials 2025, 18, 3980. https://doi.org/10.3390/ma18173980
Zawierucha I, Lagiewka J, Kapusniak P, Kulawik D, Zarska S, Girek T, Ciesielska A, Girek-Bak M, Ciesielski W. A Cyclodextrin Polymer for the Removal of Pharmaceuticals as Environmental Pollutants from Water, as Illustrated by the Example of Methylene Blue as a Model Compound. Materials. 2025; 18(17):3980. https://doi.org/10.3390/ma18173980
Chicago/Turabian StyleZawierucha, Iwona, Jakub Lagiewka, Paulina Kapusniak, Damian Kulawik, Sandra Zarska, Tomasz Girek, Aleksandra Ciesielska, Malgorzata Girek-Bak, and Wojciech Ciesielski. 2025. "A Cyclodextrin Polymer for the Removal of Pharmaceuticals as Environmental Pollutants from Water, as Illustrated by the Example of Methylene Blue as a Model Compound" Materials 18, no. 17: 3980. https://doi.org/10.3390/ma18173980
APA StyleZawierucha, I., Lagiewka, J., Kapusniak, P., Kulawik, D., Zarska, S., Girek, T., Ciesielska, A., Girek-Bak, M., & Ciesielski, W. (2025). A Cyclodextrin Polymer for the Removal of Pharmaceuticals as Environmental Pollutants from Water, as Illustrated by the Example of Methylene Blue as a Model Compound. Materials, 18(17), 3980. https://doi.org/10.3390/ma18173980