The Influence of Moisture Content and Workmanship Accuracy on the Thermal Properties of a Single-Layer Wall Made of Autoclaved Aerated Concrete (AAC)
Abstract
1. Introduction
- Modification of the composition to achieve more favourable thermal properties;
- New ergonomic shapes of elements (vertical locks and grip holes);
- Use of new joining techniques for thin joints or warm mortars, enabling the construction of energy-efficient buildings [15].
- Heat transfer through porous material [21];
- Develop a procedure for determining the thermal properties of a small, irregular air space created by the separation of masonry elements and the impact of this separation on the thermal insulation of the wall;
- Determine the impact of the thickness of a thin horizontal joint on the thermal insulation of the wall;
- Introduce AAC thermal moisture into the analysis, which was taken into account by assuming five calculation variants, differing in moisture content in the material from 0 kg/kg to 0.08 kg/kg.
2. Design Values of the Thermal Conductivity Coefficient
- Declared value (λD), used for production quality control, corresponding to laboratory conditions;
- Design value (λ), used for design purposes, corresponding to the conditions of use of the material in the building.
3. Materials and Methods
4. Research Results and Discussion
4.1. Heat Transfer Coefficient
4.2. Temperature on Surface
- -
- The temperature difference on the inner surface of the wall between the surface of the block and the surface above the horizontal joint was Δt = 18.1−17.8 = 0.3 °C.
- -
- The temperature difference on the inner surface of the wall between the block surface and the plaster surface above the vertical joint was Δt = 18.1 −(17.0 ÷ 17.3) = (1.1 ÷ 0.8) °C.
5. Discussion
- For humidity 5%, U0 = 0.2153 W/m2K, Uwall = 0.223–0.239 W/m2K;
- For humidity 8%, U0 = 0.230 W/m2K, Uwall = 0.249–0.264 W/m2K.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kamal, M.A. Analysis of Autoclaved Aerated Concrete (AAC) Blocks with Reference to Its Potential and Sustainability. J. Build. Mater. Struct. 2020, 7, 76–86. [Google Scholar] [CrossRef]
- Małolepszy, J.; Łaskawiec, K. Autoklawizowany beton komórkowy—Dzisiaj i jutro. Cem. Wapno Beton 2017, 5, 358–370. [Google Scholar]
- Małecki, M.; Małolepszy, J.; Misiewicz, L. Beton Komórkowy—Materiał Budowlany z Przyszłością. 2014; Wisła 13-15 Października, Konferencja, Dni Betonu. pp. 691–701. Available online: https://www.dnibetonu.com/wp-content/pdfs/2014/Malecki_Malolepszy_Misiewicz.pdf (accessed on 27 February 2025).
- Gudge, C.A.; Hacker, J.N. UK housing and Climate change: Performance evaluation using AAC. In Autoclaved Aerated Concrete; Limbachiya, R., Ed.; Taylor & Francis Group: London, UK, 2005; p. 131. [Google Scholar]
- Łaskawiec, K. Elementy murowe z betonu komórkowego (ABK). Inżynier Budownictwa 2016, 3, 58–61. [Google Scholar]
- EN 771-4+A1:2015-10; Specification for Masonry Units. Autoclaved Aerated Concrete Masonry Units. Polish Committee for Standardization: Warsaw, Poland, 2015.
- Asadi, I.; Shafigh, P.; Hassan, Z.F.B.A.; Mahyuddin, N.B. Thermal conductivity of concrete–A review. J. Build. Eng. 2018, 20, 81–93. [Google Scholar] [CrossRef]
- Miccoli, L.; Fontana, P.; Silva, N.; Klinge, A.; Cederqvist, C.; Kreft, O.; Qvaeschning, D.; Sjostrom, C. Composite UHPC-AAC/CLC facade elements with modified interior plaster for new buildings and refurbishment. Materials and production technology. J. Facade Des. Eng. 2015, 3, 91–102. [Google Scholar] [CrossRef]
- Yang, R.; Zhu, J.; Wu, Z.; Wu, Z.; Li, M.; Peng, C. Thermal insulation and strength of autoclaved light concrete. J. Wuhan Univ. Technol. Sci. Ed. 2011, 26, 132–136. [Google Scholar] [CrossRef]
- Straube, B.; Walther, H. AAC with low thermal conductivity. In Proceedings of the 5th International Conference on Autoclaved Aerated Concrete “Securing a Sustainable Future” to Be Held at Bydgoszcz to Celebrate, Bydgoszcz, Poland, 14–17 September 2011; pp. 78–80. [Google Scholar]
- Chen, G.; Li, F.; Jing, P.; Geng, J.; Si, Z. Effect of pore structure on thermal conductivity and mechanical properties of Autoclaved Aerated Concrete. Materials 2021, 14, 339. [Google Scholar] [CrossRef] [PubMed]
- EN 1745:2020; Masonry and Masonry Products—Methods for Determining Thermal Properties. European Committee for Standardization: Brussels, Belgium, 2020.
- Zapotoczna-Sytek, G.; Małolepszy, J.; Soboń, M. The 100th Anniversary of the Invention of Autoclaved Aerated Concrete (AAC) Polish Contribution to the Development of the Material. Przegląd Techniczny 2024-4, no. 148382. Available online: https://przeglad-techniczny.pl/setna-rocznica-wynalezienia-autoklawizowanego-betonu-komorkowego-abk-udzial-polski-w-jego-rozwoju/ (accessed on 27 February 2025).
- Misiewicz, L. Właściwości cieplne elementów murowych z ABK. Mater. Bud. 2022, 4, 64–65. [Google Scholar]
- Zapotoczna-Sytek, G. Buduję Dom z Betonu Komórkowego; Centralny Ośrodek Informacji Budownictwa: Warszawa, Poland, 2000. [Google Scholar]
- Michelini, E.; Ferretti, D.; Miccoli, L.; Parisi, F. Autoclaved aerated concrete masonry for energy efficient buildings: State of the art and future developments. Constr. Build. Mater. 2023, 402, 132996. [Google Scholar] [CrossRef]
- PN EN 772-16:2011; Metody Badań Elementów Murowych—Część 16. Określenie Wymiarów. Polish Committee for Standardization: Warsaw, Poland, 2011.
- PN EN 772-20:2002/A1:2005; Metody Badań Elementów Murowych—Część 20: Oznaczanie Płaskości Powierzchni Licowych Elementów Murowych. Polish Committee for Standardization: Warsaw, Poland, 2002.
- Rybarczyk, T.; Chojnowski , J.; Janiak, R.; Sęk, Ł.; Wójtowicz, P. Wykonawstwo z ABK. In Zeszyt 4, Zeszyt Techniczny SPB; Warszawa Stowarzyszenie Producentów Betonu: Warsaw, Poland, 2017. [Google Scholar]
- Instrukcja Użytkowania i Informacje na Temat Bezpieczeństwa Stosowania Elementów Murowych z Autoklawizowanego Betonu Komórkowego: Bloczków i Płytek SOLBET. Available online: https://www.solbet.pl/download-category/instrukcje/ (accessed on 27 February 2025).
- Qu, X.L.; Zhao, X.G. Previous and present investigations on the components, microstructure and main properties of autoclaved aerated concrete—A review. Constr. Build. Mater. 2017, 135, 505–516. [Google Scholar] [CrossRef]
- Li, F.; Chen, G.; Zhang, Y.; Hao, Y.; Si, Z. Fundamental Properties and Thermal Transferability of Masonry Built by Autoclaved Aerated Concrete Self-Insulation Blocks. Materials 2020, 13, 1680. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Si, Z.K.; Zhang, D.L.; Chen, X.F. Experimental study on thin layer mortar formulation for self-insulation system. China Concr. Cem. Products. 2016, 43, 61–65. [Google Scholar]
- She, W.; Xie, D.; Jones, M.R. Numerical analysis of the thermal behaviors of cellular concrete in two and three dimensional models. Comput. Concr. 2016, 18, 319–336. [Google Scholar] [CrossRef]
- Krause, P.; Steidl, T.; Orlik-Kożdoń, B. Cieplno-wilgotnościowe projektowanie ścian z betonu komórkowego. In Zeszyt 3 Część 1, Przegrody Pełne, Zeszyt Techniczny SPB; Warszawa Stowarzyszenie Producentów Betonu: Warsaw, Poland, 2017. [Google Scholar]
- Rybarczyk, T. Ściany Jednowarstwowe Według WT 2021, IZOLACJE, Numer Specjalny. 2020. Available online: https://www.izolacje.com.pl/artykul/sciany-stropy/252923,sciany-jednowarstwowe-wedlug-wt-2021 (accessed on 27 February 2025).
- Deklaracja Właściwości Użytkowych nr SS-ABK-1,7/IDEAL-590/420/240/PWU-1. Available online: https://www.solbet.pl/download-category/solbet-ss-bloczki/ (accessed on 20 October 2024).
- EN ISO 10456:2009; Building Materials and Products—Hygrothermal Properties—Tabulated Design Values and Procedures for Determining Declared and Design Thermal Values. Polish Committee for Standardization: Warsaw, Poland, 2009.
- Yao, X.L.; Yi, S.Y.; Fan, L.W. Effective thermal conductivity of moist aerated concrete with different porosities. J. Zhejiang Univ. (Eng. Sci.) 2015, 49, 1101–1107. [Google Scholar]
- Campanale, M.; Deganello, M.; Moro, L. Effect of moisture movement on tested thermal conductivity of moist aerated autoclaved concrete. Transp. Porous Med. 2013, 98, 125–146. [Google Scholar] [CrossRef]
- Jerman, M.; Keppert, M.; Výborný, J.; Černý, R. Hygric, thermal and durability properties of autoclaved aerated concrete. Constr. Build. Mater. 2013, 41, 352–359. [Google Scholar] [CrossRef]
- Campanale, M.; Moro, L. Thermal Conductivity of Moist Autoclaved Aerated Concrete: Experimental Comparison Between Heat Flow Method (HFM) and Transient Plane Source Technique (TPS). Transp. Porous Med. 2016, 113, 345–355. [Google Scholar] [CrossRef]
- EN ISO 6946; Building Components and Building Elements—Thermal Resistance and Thermal Transmittance—Calculation Methods. Polish Committee for Standardization: Warsaw, Poland, 2017.
- EN ISO 10077-1; Thermal Performance of Windows, Doors and Shutters—Calculation of Thermal Transmittance. Part 1: General. Polish Committee for Standardization: Warsaw, Poland, 2017.
- THERM. Available online: https://windows.lbl.gov/software/therm (accessed on 27 May 2025).
- Karta Techniczna 04a/19.05.2023 Power Gypsum Płyta Gipsowo-Włóknowa. Available online: https://supremaeco.com/power-gypsum-plyta-gipsowo-wloknowa/ (accessed on 27 May 2025).
- Deklaracja Właściwości Użytkowych Nr: SA-CB 01/3. Available online: https://www.solbet.pl/download-category/chemia-budowlana/ (accessed on 20 May 2024).
- EN ISO 10211; Thermal Bridges in Building Construction—Heat Flows and Surface Temperatures—Detailed Calculations: General. Polish Committee for Standardization: Warsaw, Poland, 2017.
- EN ISO 13789; Thermal Performance of Buildings—Transmission and Ventilation Heat Transfer Coefficients—Calculation Metod. Polish Committee for Standardization: Warsaw, Poland, 2017.
- Łaskawiec, K. Autoklawizowany beton komórkowy—odporność na wilgoć. Inżynier Budownictwa 2017, 5, 64–67. [Google Scholar]
- Janssen, H. Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence. Reliab. Eng. Syst. Saf. 2013, 109, 123–132. [Google Scholar] [CrossRef]
Density of the Material (Net Dry Density) | λ10,dry,mat According to EN 1745 [12] [W/(m·K)] | λ10,dry,mat According to Declaration of Performance of Selected Manufacturers [W/(m·K)] | ||||
---|---|---|---|---|---|---|
[kg/m3] | p = 50% | p = 90% | Manuf. 1 | Manuf. 2 | Manuf. 3 | Manuf. 4 |
300 | 0.072 | 0.085 | 0.075 (according to EN 1745) | 0.072 (S1, p = 50%) | 0.085 (S2, p = 90%) | 0.080 (S2, p = 90%) |
400 | 0.096 | 0.110 | AAC densities for which it is not possible to meet thermal protection requirements with a wall thickness of 42 cm | |||
500 | 0.120 | 0.130 | ||||
600 | 0.150 | 0.160 | ||||
700 | 0.170 | 0.180 | ||||
800 | 0.190 | 0.210 | ||||
900 | 0.220 | 0.240 | ||||
1000 | 0.240 | 0.260 |
Joint Geometry | Voids in the Joint | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |||
6.9 | 0.9 | 3.0 | 1.0 | 4.2 | 4.2 | 4.2 | 1.0 | 2.9 | 1.0 | 6.9 | |||
15.15 | 11.25 | 9.3 | 7.3 | 4.7 | 0.5 | −3.7 | −6.3 | −8.25 | −10.15 | −14.15 | |||
λeq for joint separation, W/mK | 0 mm | - | 0.058 | 0.092 | 0.061 | 0.097 | 0.419 | 0.097 | 0.061 | 0.092 | 0.058 | - | |
1 mm | 0.203 | 0.061 | 0.097 | 0.065 | 0.098 | 0.369 | 0.092 | 0.059 | 0.085 | 0.054 | 0.154 | ||
2 mm | 0.204 | 0.064 | 0.098 | 0.067 | 0.099 | 0.370 | 0.093 | 0.061 | 0.085 | 0.056 | 0.155 | ||
3 mm | 0.206 | 0.067 | 0.107 | 0.068 | 0.114 | 0.371 | 0.108 | 0.062 | 0.093 | 0.058 | 0.156 | ||
5 mm | 0.287 | 0.071 | 0.109 | 0.073 | 0.116 | 0.373 | 0.110 | 0.067 | 0.095 | 0.062 | 0.237 | ||
7 mm | 0.290 | 0.076 | 0.111 | 0.077 | 0.118 | 0.374 | 0.111 | 0.070 | 0.097 | 0.065 | 0.239 | ||
7.3 | 1.1 | 3.2 | 1.3 | 3.1 | 4.2 | 3.1 | 1.3 | 3.2 | 1.1 | 7.3 | |||
14.95 | 10.75 | 8.6 | 6.35 | 4.15 | 0.5 | −3.15 | −5.35 | −7.6 | −9.75 | −13.95 | |||
λeq for joint separation, W/mK | 0 mm | - | 0.058 | 0.092 | 0.061 | 0.069 | 0.535 | 0.069 | 0.061 | 0.092 | 0.058 | - | |
1 mm | 0.203 | 0.061 | 0.097 | 0.064 | 0.070 | 0.343 | 0.066 | 0.059 | 0.085 | 0.054 | 0.155 | ||
2 mm | 0.204 | 0.064 | 0.098 | 0.067 | 0.071 | 0.472 | 0.067 | 0.062 | 0.086 | 0.056 | 0.155 | ||
3 mm | 0.205 | 0.066 | 0.107 | 0.067 | 0.072 | 0.473 | 0.068 | 0.062 | 0.095 | 0.058 | 0.156 | ||
5 mm | 0.289 | 0.071 | 0.109 | 0.073 | 0.074 | 0.475 | 0.070 | 0.067 | 0.097 | 0.062 | 0.239 | ||
7 mm | 0.291 | 0.075 | 0.111 | 0.077 | 0.075 | 0.476 | 0.072 | 0.070 | 0.099 | 0.065 | 0.241 | ||
6.6 | 0.9 | 2.7 | 1.1 | - | 13.8 | - | 1.1 | 2.7 | 0.9 | 6.5 | |||
15.4 | 11.65 | 9.85 | 7.95 | - | 0.5 | - | −6.95 | −8.85 | −10.65 | −14.35 | |||
λeq for joint separation, W/mK | 0 mm | - | 0.058 | 0.092 | 0.061 | - | 0.386 | - | 0.061 | 0.092 | 0.058 | - | |
1 mm | 0.204 | 0.061 | 0.098 | 0.065 | - | 0.371 | - | 0.059 | 0.084 | 0.054 | 0.154 | ||
2 mm | 0.205 | 0.064 | 0.099 | 0.067 | - | 0.372 | - | 0.061 | 0.085 | 0.056 | 0.155 | ||
3 mm | 0.206 | 0.067 | 0.106 | 0.068 | - | 0.646 | - | 0.061 | 0.092 | 0.058 | 0.156 | ||
5 mm | 0.286 | 0.072 | 0.108 | 0.074 | - | 0.648 | - | 0.066 | 0.094 | 0.061 | 0.235 | ||
7 mm | 0.289 | 0.076 | 0.111 | 0.078 | - | 0.650 | - | 0.070 | 0.096 | 0.064 | 0.236 | ||
ΔT and Tm according to Figure 5. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wesołowska, M.; Liczkowski, D. The Influence of Moisture Content and Workmanship Accuracy on the Thermal Properties of a Single-Layer Wall Made of Autoclaved Aerated Concrete (AAC). Materials 2025, 18, 3967. https://doi.org/10.3390/ma18173967
Wesołowska M, Liczkowski D. The Influence of Moisture Content and Workmanship Accuracy on the Thermal Properties of a Single-Layer Wall Made of Autoclaved Aerated Concrete (AAC). Materials. 2025; 18(17):3967. https://doi.org/10.3390/ma18173967
Chicago/Turabian StyleWesołowska, Maria, and Daniel Liczkowski. 2025. "The Influence of Moisture Content and Workmanship Accuracy on the Thermal Properties of a Single-Layer Wall Made of Autoclaved Aerated Concrete (AAC)" Materials 18, no. 17: 3967. https://doi.org/10.3390/ma18173967
APA StyleWesołowska, M., & Liczkowski, D. (2025). The Influence of Moisture Content and Workmanship Accuracy on the Thermal Properties of a Single-Layer Wall Made of Autoclaved Aerated Concrete (AAC). Materials, 18(17), 3967. https://doi.org/10.3390/ma18173967