Pressure-Induced Structural Phase Transition in Ho2Ce2O7 Oxide
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Sun, J.; Duo, S.; Zhou, X.; Yuan, J.; Dong, S.; Yang, X.; Zeng, J.; Jiang, J.; Deng, L.; et al. Thermal and mechanical properties of Ta2O5 doped La2Ce2O7 thermal barrier coatings prepared by atmospheric plasma spraying. J. Eur. Ceram. Soc. 2019, 39, 2379–2388. [Google Scholar] [CrossRef]
- Yang, G.; El Loubani, M.; Chalaki, H.R.; Kim, J.; Keum, J.K.; Rouleau, C.M.; Lee, D. Tuning Ionic Conductivity in Fluorite Gd-Doped CeO2-Bixbyite RE2O3 (RE = Y and Sm) Multilayer Thin Films by Controlling Interfacial Strain. ACS Appl. Electron. Mater. 2023, 5, 4556–4563. [Google Scholar] [CrossRef] [PubMed]
- Kalland, L.-E.; Løken, A.; Bjørheim, T.S.; Haugsrud, R.; Norby, T. Structure, hydration, and proton conductivity in 50% La and Nd doped CeO2–La2Ce2O7 and Nd2Ce2O7–and their solid solutions. Solid State Ion. 2020, 354, 115401. [Google Scholar] [CrossRef]
- Gao, L.; Guo, H.; Gong, S.; Xu, H. Plasma-sprayed La2Ce2O7 thermal barrier coatings against calcium–magnesium–alumina–silicate penetration. J. Eur. Ceram. Soc. 2014, 34, 2553–2561. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, H.; Gong, S. Thermal shock resistance and mechanical properties of La2Ce2O7 thermal barrier coatings with segmented structure. Ceram. Int. 2009, 35, 2639–2644. [Google Scholar] [CrossRef]
- Zhao, A. Novel Nanofibrous Dy2Ce2O7 as an Electrocatalyst for Methanol Oxidation. Int. J. Electrochem. Sci. 2019, 14, 8121–8130. [Google Scholar] [CrossRef]
- Ping, X.; Meng, B.; Li, C.; Lin, W.; Chen, Y.; Fang, C.; Zhang, H.; Liang, W.; Zheng, Q. Thermophysical and electrical properties of rare-earth-cerate high-entropy ceramics. J. Am. Ceram. Soc. 2022, 105, 4910–4920. [Google Scholar] [CrossRef]
- Ismail, S.A.; Han, D. Phase behavior, proton concentration, and conductivity of La2Ce2O7 doped with Y, Ho, Er, Tm, or Yb. J. Am. Ceram. Soc. 2022, 105, 7548–7557. [Google Scholar] [CrossRef]
- Han, W.; Li, Z.; Liu, H. La2Ce2O7 supported ruthenium as a robust catalyst for ammonia synthesis. J. Rare Earths 2019, 37, 492–499. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, B.; Shen, J.; Lou, Y.; Ji, Y. La2Ce2O7: A promising proton ceramic conductor in hydrogen economy. J. Alloys Compd. 2016, 659, 232–239. [Google Scholar] [CrossRef]
- Zhong, Z.; Jiang, Y.; Lian, Z.; Song, X.; Peng, K. Exploring the effects of divalent alkaline earth metals (Mg, Ca, Sr, Ba) doped Nd2Ce2O7 electrolyte for proton-conducting solid oxide fuel cells. Ceram. Int. 2020, 46, 12675–12685. [Google Scholar] [CrossRef]
- Jiang, Y.; Song, X.; Zhong, Z.; Lian, Z.; Peng, K. Sintering and electrochemical performance of Nd2Ce2O7 electrolyte with Bi7WO13.5 sintering aid for proton conductor solid oxide fuel cells. J. Alloys Compd. 2020, 836, 155539. [Google Scholar] [CrossRef]
- Zinatloo-Ajabshir, S.; Salehi, Z.; Salavati-Niasari, M. Synthesis of dysprosium cerate nanostructures using Phoenix dactylifera extract as novel green fuel and investigation of their electrochemical hydrogen storage and Coulombic efficiency. J. Clean. Prod. 2019, 215, 480–487. [Google Scholar] [CrossRef]
- Zinatloo-Ajabshir, S.; Salehi, Z.; Amiri, O.; Salavati-Niasari, M. Green synthesis, characterization and investigation of the electrochemical hydrogen storage properties of Dy2Ce2O7 nanostructures with fig extract. Int. J. Hydrog. Energy 2019, 44, 20110–20120. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Xu, X.; Xi, R.; Liu, Y.; Fang, X.; Wang, X. Tailoring La2Ce2O7 catalysts for low temperature oxidative coupling of methane by optimizing the preparation methods. Catal. Today 2020, 355, 518–528. [Google Scholar] [CrossRef]
- Dolatalizadeh, M.; Behzad, M.; Khademinia, S.; Arab, A. Experimentally Designed Natural Light Induced Photocatalytic Performance of Nanostructured Eu2Ce2O7 Synthesized by a Facile Solid State Method in Removal of Environmental Pollutant Malachite Green (MG). Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2020, 91, 9–20. [Google Scholar] [CrossRef]
- Zinatloo-Ajabshir, S.; Salavati-Niasari, M. Preparation of magnetically retrievable CoFe2O4@SiO2@Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants. Compos. Part B Eng. 2019, 174, 106930. [Google Scholar] [CrossRef]
- Subramanian, M.A.; Aravamudan, G.; Rao, G.V.S. Oxide pyrochlores—A review. Prog. Solid State Chem. 1983, 15, 55–143. [Google Scholar] [CrossRef]
- Yamamura, H.; Nishino, H.; Kakinuma, K.; Nomura, K. Crystal Phase and Electrical Conductivity in the Pyrochlore Type Composition Systems, Ln2Ce2O7 (LnüLa, Nd, Sm, Eu, Gd, Yand Yb). J. Ceram. Soc. Jpn. 2003, 111, 902–906. [Google Scholar] [CrossRef]
- Sakata, M.; Kagayama, T.; Shimizu, K.; Matsuhira, K.; Takagi, S.; Wakeshima, M.; Hinatsu, Y. Suppression of metal-insulator transition at high pressure and pressure-induced magnetic ordering in pyrochlore oxide Nd2Ir2O7. Phys. Rev. B 2011, 83, 041102. [Google Scholar] [CrossRef]
- Tafti, F.F.; Ishikawa, J.J.; McCollam, A.; Nakatsuji, S.; Julian, S.R. Pressure-tuned insulator to metal transition inEu2Ir2O7. Phys. Rev. B 2012, 85, 205104. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, K.; Li, N.; Ma, S.; Wang, Y.; Kong, Q.; Baudelet, F.; Wang, X.; Yang, W. Tricolor Ho3+ Photoluminescence Enhancement from Site Symmetry Breakdown in Pyrochlore Ho2Sn2O7 after Pressure Treatment. Phys. Rev. Lett. 2020, 125, 245701. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.X.; Tracy, C.L.; Lang, M.; Ewing, R.C. Stability of fluorite-type La2Ce2O7 under extreme conditions. J. Alloys Compd. 2016, 674, 168–173. [Google Scholar] [CrossRef]
- Tu, T.; Zhang, B.; Liu, J.; Wu, K.; Peng, K. Synthesis and conductivity behaviour of Mo-doped La2Ce2O7 proton conductors. Electrochim. Acta 2018, 283, 1366–1374. [Google Scholar] [CrossRef]
- Choudhary, B.; Anwar, S. Probing the Transport Properties, Electrophoretic Deposition, and Electrochemical Performance of La2–xSmxCe2O7 Ceramics for IT-SOFCs. ACS Appl. Energy Mater. 2023, 6, 11817–11827. [Google Scholar] [CrossRef]
- Mandal, B.P.; Roy, M.; Grover, V.; Tyagi, A.K. X-ray diffraction, μ-Raman spectroscopic studies on CeO2−RE2O3 (RE=Ho, Er) systems: Observation of parasitic phases. J. Appl. Phys. 2008, 103, 033506. [Google Scholar] [CrossRef]
- Mao, H.K.; Xu, J.; Bell, P.M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. 1986, 91, 4673–4676. [Google Scholar] [CrossRef]
- Klotz, S.; Chervin, J.C.; Munsch, P.; Le Marchand, G. Hydrostatic limits of 11 pressure transmitting media. J. Phys. D Appl. Phys. 2009, 42, 075413. [Google Scholar] [CrossRef]
- Banerji, A.; Grover, V.; Sathe, V.; Deb, S.K.; Tyagi, A.K. system: Unraveling of microscopic features by Raman spectroscopy. Solid State Commun. 2009, 149, 1689–1692. [Google Scholar] [CrossRef]
- Coduri, M.; Scavini, M.; Pani, M.; Carnasciali, M.M.; Klein, H.; Artini, C. From nano to microcrystals: Effects of different synthetic pathways on the defect architecture in heavily Gd-doped ceria. Phys. Chem. Chem. Phys. 2017, 19, 11612–11630. [Google Scholar] [CrossRef]
- Zhang, F.X.; Lian, J.; Becker, U.; Ewing, R.C.; Hu, J.; Saxena, S.K. High-pressure structural changes in the Gd2Zr2O7 pyrochlore. Phys. Rev. B 2007, 76, 214104. [Google Scholar] [CrossRef]
- Patel, M.K.; Baldinozzi, G.; Aguiar, J.A.; Valdez, J.A.; Vogel, S.C.; Sickafus, K.E. Structural analysis of Gd2Ce2O7. MRS Proc. 2015, 1743, mrsf14-1743. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, Y.; Zhao, X.; Li, Y.; Tao, Q.; Zhu, P.; Wang, X. Pressure-induced structural transition of pyrochlore Tm2Sn2O7. J. Alloys Compd. 2023, 963, 171248. [Google Scholar] [CrossRef]
- Turner, K.M.; Rittman, D.R.; Heymach, R.A.; Tracy, C.L.; Turner, M.L.; Fuentes, A.F.; Mao, W.L.; Ewing, R.C. Pressure-induced structural modifications of rare-earth hafnate pyrochlore. J. Phys. Condens. Matter 2017, 29, 255401. [Google Scholar] [CrossRef]
- Liu, D.; Lei, W.W.; Zou, B.; Yu, S.D.; Hao, J.; Wang, K.; Liu, B.B.; Cui, Q.L.; Zou, G.T. High-pressure x-ray diffraction and Raman spectra study of indium oxide. J. Appl. Phys. 2008, 104, 083506. [Google Scholar] [CrossRef]
- Qi, J.; Liu, J.F.; He, Y.; Chen, W.; Wang, C. Compression behavior and phase transition of cubic In2O3 nanocrystals. J. Appl. Phys. 2011, 109, 063520. [Google Scholar] [CrossRef]
- Murnaghan, F.D. The Compressibility of Media under Extreme Pressures. Proc. Natl. Acad. Sci. USA 1944, 30, 244–247. [Google Scholar] [CrossRef]
- Birch, F. Finite Elastic Strain of Cubic Crystals. Phys. Rev. 1947, 71, 809–824. [Google Scholar] [CrossRef]
- Nakajima, A.; Yoshihara, A.; Ishigame, M. Defect-induced Raman spectra in doped CeO2. Phys. Rev. B 1994, 50, 13297–13307. [Google Scholar] [CrossRef]
- Weber, W.H.; Hass, K.C.; McBride, J.R. Raman study of CeO2: Second-order scattering, lattice dynamics, and particle-size effects. Phys. Rev. B 1993, 48, 178–185. [Google Scholar] [CrossRef]
- McBride, J.R.; Hass, K.C.; Poindexter, B.D.; Weber, W.H. Raman and x-ray studies of Ce1-xREXO2-y, where RE=La, Pr, Nd, Eu, Gd and Tb. J. Appl. Phys. 1994, 76, 2435–2441. [Google Scholar] [CrossRef]
Compounds | Ho2Ce2O7 (1.2 GPa) | Ho2Ce2O7 (28.8 GPa) | |
---|---|---|---|
Crystal System | Cubic | Cubic | Hexagonal |
Space group | Ia-3 (No. 206) | Ia-3 (No. 206) | R-3c (No. 167) |
a/Å | 10.7090 (6) | 10.3529 (2) | 5.6984 (12) |
b/Å | 10.7090 (6) | 10.3529 (2) | 5.6984 (12) |
c/Å | 10.7090 (6) | 10.3529 (2) | 16.2232 (09) |
Rp | 1.44% | 1.45% | |
Rwp | 2.82% | 2.62% | |
Rexp | 3.22% | 3.12% | |
χ | 0.88 | 0.84 | |
Atoms | Wyckoff (x y z) | Wyckoff (x y z) | Wyckoff (x y z) |
Ho1/Ce1 | 24d (−0.0107 (3) 0 0.25) | 24d (−0.0043 (6) 0 0.25) | 12c (0 0 0.872 (9)) |
Ho2/Ce2 | 8b (0.25 0.25 0.25) | 8b (0.25 0.25 0.25) | |
O (1) | 48e (0.381 (5) 0.138 (8) 0.362 (2)) | 48e (0.368 (8) 0.161 (6) 0.392 (9)) | 18e (0.306 (2) 0 0.25) |
O (2) | 16c (0.391 (2) 0.391 (2) 0.391 (2)) | 16c (0.484 (9) 0.484 (9) 0.484 (9)) |
Pressure (GPa) | Symmetry | a(Å) | c(Å) | V(Å3) |
---|---|---|---|---|
1.2 | Cubic | 10.7092 (6) | 1228.1 (11) | |
3 | Cubic | 10.6607 (3) | 1211.6 (5) | |
4.5 | Cubic | 10.6291 (4) | 1200.8 (2) | |
6.2 | Cubic | 10.5998 (8) | 1190.9 (07) | |
7.9 | Cubic | 10.5718 (7) | 1181.5 (3) | |
9.8 | Cubic | 10.5503 (2) | 1174.3 (5) | |
12.2 | Cubic | 10.5287 (09) | 1167.1 (4) | |
15.5 | Cubic | 10.5007 (2) | 1157.8 (3) | |
17.6 | Cubic | 10.4812 (8) | 1151.4 (6) | |
20.1 | Cubic | 10.4574 (5) | 1143.6 (8) | |
23.8 | Cubic | 10.4139 (6) | 1129.5 (5) | |
Hexagonal | 5.7075 (8) | 16.2623 (6) | 429.1 (2) | |
26.4 | Cubic | 10.3770 (3) | 1117.4 (2) | |
Hexagonal | 5.7012 (2) | 16.2381 (5) | 426.8 (14) | |
28.8 | Cubic | 10.3529 (07) | 1109.6 (3) | |
Hexagonal | 5.6984 (12) | 16.2232 (09) | 424.1 (11) | |
31.5 | Cubic | 10.3260 (9) | 1101.1 (4) | |
Hexagonal | 5.6941 (4) | 16.2059 (06) | 422.3 (2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, T.; Qv, J.; Yan, L.; Li, Y.; Tao, Q.; Zhu, P.; Wang, X. Pressure-Induced Structural Phase Transition in Ho2Ce2O7 Oxide. Materials 2025, 18, 2729. https://doi.org/10.3390/ma18122729
Lv T, Qv J, Yan L, Li Y, Tao Q, Zhu P, Wang X. Pressure-Induced Structural Phase Transition in Ho2Ce2O7 Oxide. Materials. 2025; 18(12):2729. https://doi.org/10.3390/ma18122729
Chicago/Turabian StyleLv, Tao, Jia Qv, Limin Yan, Yan Li, Qiang Tao, Pinwen Zhu, and Xin Wang. 2025. "Pressure-Induced Structural Phase Transition in Ho2Ce2O7 Oxide" Materials 18, no. 12: 2729. https://doi.org/10.3390/ma18122729
APA StyleLv, T., Qv, J., Yan, L., Li, Y., Tao, Q., Zhu, P., & Wang, X. (2025). Pressure-Induced Structural Phase Transition in Ho2Ce2O7 Oxide. Materials, 18(12), 2729. https://doi.org/10.3390/ma18122729